×

zbMATH — the first resource for mathematics

A new approach in nonlinear mechanics: The large time increment method. (English) Zbl 0712.73029
Summary: A new algorithm family taking into account the entire loading process in a single large time increment is proposed to compute structures with physical nonlinearities and is tested on some examples in elastoplasticity. The method considerably reduces the number of transfers between local and global levels, hence the numerical cost of calculation is also diminished.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ladeveze, Comptes-rendus Acad. Sci. (Paris) 300 (1985)
[2] ’Sur un algorithme en mécanique des structures’, Rapport interne L.M.T, E.N.S de Cachan, No. 44, 1984.
[3] and , ’Sur de nouveaux algorithmes en plasticité et viscoplasticité’, Actes du Collogue ’Tendances actuelles en calcul des structures’, Bastia, 1985.
[4] Ladeveze, Comptes-rendus Acad. Sci. (Paris) 301 (1985)
[5] , and , ’A new large time algorithm for anisotropic plasticity’, Communication l.U.T.A.M/l.C.M–Symposium on Yielding, Damage and Failure of Anisotropic Solids, Grenoble, 1987.
[6] , and , ’On a class of large time increment algorithms’, Proc. NUMETA, T41, 1987.
[7] Nayak, Int.j. numer. methods eng. 5 pp 113– (1972)
[8] Nguyen, Int. j. numer. methods eng. 11 pp 817– (1977)
[9] Benallal, J. Eng. Mater. Tech. 109 pp 326– (1987)
[10] Matthies, Int. j. numer. methods eng. 14 pp 1613– (1979)
[11] Marques, Eng. Comp. 1 pp 42– (1984)
[12] Hugues, J. Appl. Mech. ASME 50 pp 1033– (1983)
[13] Zienkiewicz, Int.j. numer. methods eng. 23 pp 1343– (1986)
[14] Geradin, Comp. Struct. 13 pp 73– (1981)
[15] ’Analysis of transient algorithms with particular reference to stability behaviour’, Computer Methods for Transient Analysis–Mechanical and Mathematical Methods, First series, Vol. 1, North-Holland, Amsterdam, 1983.
[16] Zienkiewicz, Int. j. numer. methods eng. 20 pp 1529– (1984)
[17] Desai, Comp. Methods Mech. Eng. 62 pp 155– (1987)
[18] Ortiz, Comp. Methods Appl. Mech. Eng. 58 pp 151– (1986)
[19] Bhatti, Comp. Struct. 13 pp 181– (1981)
[20] Park, Int. j. numer. methods eng. 18 pp 609– (1982)
[21] Simo, Int.j. numer. methods eng. 22 pp 649– (1986)
[22] ’On the finite element approximation and the solution by a penality duality algorithm of an elastoplastic problem’, Rapport Laboria No.7503, 1974.
[23] Ladeveze, Comptes-rendus Acad. Sci. (Paris) 292 pp 991– (1981)
[24] Ladeveze, Comptes-rendus. Acad. Sci. (Paris) 293 pp 481– (1981)
[25] and , Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
[26] Crisfield, Int. j. numer. methods eng. 19 pp 1269– (1983)
[27] Dennis, SIAM Rev 19 pp 46– (1977)
[28] Glowinski, Comptes-rendus Acad. Sci. (Paris) 278A pp 1649– (1974)
[29] Ricks, Int. J. Solids Struct. 15 pp 524– (1979)
[30] ’Comparaison de modèle de milieux continus’, Thèse de Doctorat d’état, Paris 6, 1975.
[31] ’Optimal mesh for finite element analysis’, Conference on Automated Mesh Generation and Adaptation, Grenoble, 1987.
[32] and , ’Accuracy of elastoplastic and dynamic analysis’, Chapter 10 in Accuracy Estimates and Adaptativity for Finite Elements, 1986, pp. 181-203.
[33] and , ’Modelisation of the strain memory effect of the cyclic hardening of 316 stainless steel’, Proc. 5th SMIRT Conf., Berlin, 1979, Paper L 11/3.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.