×

Frequency-hopping code design for Target detection via optimization theory. (English) Zbl 1429.90058

Summary: We present a signaling scheme for information embedding into the illumination of radar using frequency-hopping pulses. A frequency-hopping-based joint radar-communication system enables implementing a primary radar operation and a secondary communication function simultaneously. Then, we consider the problems of radar codes optimization under a peak-to-average-power ratio and an energy constraint. These radar codes design problems can be converted into non-convex quadratic programs with a finite or an infinite number of quadratic constraints. All problems are proved to be NP-hard optimization problems. Therefore, we develop optimization approaches, resorting to semi-definite programming relaxation technique along with to the idea of trigonometric polynomials, offering expected approximate solutions with a polynomial time calculation burden. We assess the capability of the proposed schemes, considering both the detection probability and the robustness in correspondence of Doppler shifts offered by the Neyman-Pearson detector. Simulation results show an improvement in detection performance as the average signal-to-noise ratio value increases, while still maintaining low symbol error rates between the proposed system nodes.

MSC:

90C26 Nonconvex programming, global optimization
90C20 Quadratic programming
90C22 Semidefinite programming
90C90 Applications of mathematical programming

Software:

CVX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ciuonzo, D., De Maio, A., Foglia, G., Piezzo, M.: Intrapulse radar-embedded communications via multi-objective optimization. IEEE Trans. Aerosp. Electron. Syst. 51(1), 2960-2974 (2015)
[2] Chiriyath, A.R., Paul, B., Jacyna, G.M., Bliss, D.W.: Inner bounds on performance of radar and communications co-existence. IEEE Trans. Aerosp. Electron. Syst. 46(1), 1185-1200 (2010) · Zbl 1412.94029
[3] Yao, Y., Zhao, J., Wu, L.: Adaptive waveform design for MIMO radar-communication transceiver. Sensors 18(6), 1957 (2018)
[4] Geng, Z., Deng, H., Himed, B.: Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Process. Lett. 22(4), 484-488 (2015)
[5] Blunt, S.D., Yatham, P., Stiles, J.: Intrapulse radar-embedded communications. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1185-1200 (2010)
[6] Li, B., Petropulu, A.P., Trappe, W.: Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system. IEEE Trans. Signal Process. 64(2), 4562-4575 (2016) · Zbl 1414.94338
[7] Aubry, A., De Maio, A., Huang, Y., Piezzo, M., Farina, A.: A new radar waveform design algorithm with improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1029-1038 (2015)
[8] Chiriyath, A., Paul, N., Jacyna, G., Bliss, D.W.: Inner bounds on performance of radar and communications co-existence. IEEE Trans. Signal Process. 64(2), 464-474 (2016) · Zbl 1412.94029
[9] Li, B., Petropulu, A.P., Trappe, W.: Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system. IEEE Trans. Signal Process. 64(17), 4562-4575 (2016) · Zbl 1414.94338
[10] Li, B., Petropulu, A.P., Trappe, W.: Analysis of symbol-design strategies for intrapulse radar-embedded communications. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2914-2931 (2015)
[11] Ciuonzo, D., De Maio, A., Foglia, A., Piezzo, M.: Intrapulse radar embedded communications via multiobjective optimization. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2960-2974 (2015)
[12] Han, L., Wu, K.: Joint wireless communication and radar sensing systems-state of the art and future prospects. IET Microw. Antennas Propag. 7(11), 876-885 (2013)
[13] Deng, H., Himed, B.: Interference mitigation processing for spectrum sharing between radar and wireless communications systems. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1911-1919 (2013)
[14] Wang, L., McGeehan, J., Williams, C., Doufexi, A.: Application of cooperative sensing in radar-communications coexistence. IET Commun. 2(6), 856-868 (2018)
[15] Hassanien, A., Amin, M. G., Zhang, Y. D., Ahmad, F.: Dual function radar-communications using phase-rotational invariance. In: Proceedings of the European Signal Processing Conference, Nice, France, pp. 1346-1350 (2015)
[16] Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 64(8), 2168-2181 (2016) · Zbl 1414.94237
[17] Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Signaling strategies for dual-function radar communications: an overview. IEEE Trans. Aerosp. Electron. Syst. 31(10), 36-45 (2016)
[18] Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Phase-modulation based dual-function radar-communications. IET Radar Sonar Navig. 10(8), 1411-1421 (2016)
[19] Hassanien, A., Amin, M. G., Zhang, Y. D., Himed, B.: A dual-function MIMO radar-communications system using PSK modulation. In: European Signal Processing Conference, Budapest, Hungary, pp. 1613-1617 (2016)
[20] Hassanien, A., Himed, B., Rigling, B. D.: A dual-function MIMO radar-communications system using frequency-hopping waveforms. In: IEEE Radar Conference, Seattle, WA, USA, pp. 1721-1725 (2017)
[21] Nehorai, A., Gini, F., Greco, M.S., Suppappola, A.P., Rangaswamy, M.: Special issue on adaptive waveform design for agile sensing and communications. IEEE J. Sel. Topics Signal Process. 1(1), 2-213 (2007)
[22] Calderbank, R., Howard, S., Moran, B.: Waveform diversity in radar signal processing. IEEE Signal Process. Mag. 26(1), 32-41 (2009)
[23] Cochran, D., Suvorova, S., Howard, S., Moran, B.: Waveform libraries. IEEE Signal Process. Mag. 26(1), 12-21 (2009)
[24] Nehorai, A., Gini, F., Greco, M.S., Papandreou-Suppappola, A., Rangaswamy, M.: Adaptive waveform design for agile sensing and communications. IEEE J. Sel. Topics Signal Process. 1(1), 2-5 (2007)
[25] Farina, A., Studer, F.A.: Detection with high resolution radar: great promise, big challenge. Microw. J. 34(5), 263-273 (1991)
[26] Pillai, S.U., Oh, H.S., Youla, D.C., Guerci, J.R.: Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inf. Theory 46(2), 577-584 (2000) · Zbl 1004.94522
[27] Kay, S.: Optimal signal design for detection of point targets in stationary Gaussian clutter/reverberation. IEEE J. Sel. Topics Signal Process. 1(1), 31-41 (2007)
[28] Li, J., Guerci, J.R., Xu, L.: Signal waveform’s optimal-under-restriction design for active sensing. IEEE Signal Process. Lett. 13(9), 565-568 (2006)
[29] De Maio, A., De Nicola, S., Huang, Y., Zhang, S., Farina, A.: Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Trans. Signal Process. 56(11), 5618-5629 (2008) · Zbl 1390.94676
[30] De Maio, A., De Nicola, S., Huang, Y., Palomar, D., Zhang, S., Farina, A.: Code design for radar STAP via optimization theory. IEEE Trans. Signal Process. 58(2), 679-694 (2010) · Zbl 1392.94171
[31] De Maio, A., Huang, Y., Piezzo, M.: A Doppler robust max – min approach to radar code design. IEEE Trans. Signal Process. 58(9), 4943-4947 (2010) · Zbl 1392.94172
[32] De Maio, A., De Nicola, S., Huang, Y., Luo, Z.Q., Zhang, S.: Design of phase codes for radar performance optimization with a similarity constraint. IEEE Trans. Signal Process. 57(2), 610-621 (2009) · Zbl 1391.94188
[33] De Maio, A., Huang, Y., Piezzo, M., Zhang, S., Farina, A.: Design of optimized radar codes with a peak to average power ratio constraint. IEEE Trans. Signal Process. 59(6), 2683-2697 (2011) · Zbl 1392.94753
[34] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problem using semi-definite programming. J. ACM 42(1), 1115-1145 (1995) · Zbl 0885.68088
[35] Roh, T., Vandenberghe, L.: Discrete transforms, semi-definite programming, and sum-of-squares representations of nonnegative polynomials. SIAM J. Optim. 16(4), 939-964 (2006) · Zbl 1131.90039
[36] Luo, Z.Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18(1), 1-28 (2007) · Zbl 1156.90011
[37] Nemirovski, A., Roos, C., Terlaky, T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86(3), 463-473 (1999) · Zbl 0944.90056
[38] Sidiropoulos, N., Davidson, T., Luo, Z.Q.: Transmit beamforming for physical-layer multicasting. IEEE Trans. Signal Process. 54(6), 2239-2251 (2006) · Zbl 1374.94600
[39] So, A., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. Ser B 110(1), 93-110 (2007) · Zbl 1192.90134
[40] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software) 2008 [Online]. Available: http://stanford.edu/ boyd/cvx
[41] Zhang, S.: Quadratic maximization and semi-definite relaxation. Math. Program. Ser. A 87(3), 453-465 (2000) · Zbl 1009.90080
[42] Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Springer, Berlin (1995) · Zbl 0805.00009
[43] Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16(3), 871-890 (2006) · Zbl 1113.90115
[44] Goemans, M.X., Williamson, D.P.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442-470 (2004) · Zbl 1093.90038
[45] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, Second Edition, Nonconvex Optimization and its Applications-Volume 2. Springer, Berlin (2000) · Zbl 0966.90073
[46] Pardalos, P.M., Romeijn, E.: Handbook of Global Optimization-Volume 2, Heuristic Approaches. Springer, Berlin (2002) · Zbl 0991.00017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.