×

zbMATH — the first resource for mathematics

Morphoelastic fiber remodeling in pressurized thick-walled cylinders with application to soft tissue collagenous tubes. (English) Zbl 07111002
Summary: We consider the mechanics of fiber remodeling in a pressurized thick walled cylinder where our focus is on the interaction between inflation and remodeling. The material is taken to consist of an incompressible neo-Hookean ground substance matrix in which the fibers are embedded. The fiber network is assumed to undergo a stretch mediated remodeling process, as suggested by experiments on enzymatic degradation of collagen fibers in biological soft tissues. In our treatment, such a remodeling process is defined in terms of a constant fiber-creation rate, and a fiber-dissolution rate that decreases with the amount of fiber stretch. Here we study how pressure loading of a tube affects this process within the cylindrical wall. The impact of two basic load carrying fibers models on the remodeling of the fiber network are explored, as well as the effect of two different choices for the fiber’s natural configuration when replacement fibers are first synthesized.
Reviewer: Reviewer (Berlin)

MSC:
74 Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acampora, K. B.; Nagatomi, J.; Langan, E. M.; LaBerge, M., On the mechanics of a growing tumor, Ann. Vasc. Surg., 24, 116-126, (2010)
[2] Aspden, R. M., Collagen organisation in the cervix and its relation to mechanical function, Collagen Relat. Res., 8, 103-112, (1988)
[3] Ayoub, S.; Ferrari, G.; Gorman, R. C.; Gorman, J. H.; Schoen, F. J.; Sacks, M. S., Heart valve biomechanics and underlying mechanobiology, Comp. Physiol., 6, 1743-1780, (2017)
[4] Bader, D. L.; Salter, D. M.; Chowdhury, T. T., Biomechanical influence of cartilage homeostasis in health and disease, Arthritis, 2011, Article 979032 pp., (2011)
[5] Baek, S.; Rajagopal, K. R.; Humphrey, J. D., Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm, J. Elast., 80, 13-31, (2005) · Zbl 1197.74072
[6] Bentley, J. P., Aging of collagen, J. Investig. Dermatol., 73, 80-83, (1979)
[7] Bienkowski, R. S.; Baum, B. J.; Crystal, R. G., Fibroblasts degrade newly synthesised collagen within the cell before secretion, Nature, 276, 413-416, (1978)
[8] Bischoff, J. E., Continuous versus discrete (invariant) representations of fibrous structure for modeling non-linear anisotropic soft tissue behavior, Int. J. Nonlin. Mech., 41, 167-179, (2006)
[9] Bronstein, I. N.; Semendjajew, K. A.; Musiol, G.; Mühlig, H., Taschenbuch der Mathematik, (2001), Verlag Harri Deutsch, Thun & Frankfurt am Main · Zbl 1121.00301
[10] Cannon, W. B., Organization for physiological homeostasis, Physiol. Rev., 9, 399-431, (1929)
[11] Carroll, M. M., Pressure maximum behavior inflation of incompressible elastic hollow spheres and cylinders, Q. Appl. Math., 45, 141-154, (1987) · Zbl 0619.73035
[12] Cortes, D. H.; Elliott, D. M., Modeling of collagenous tissues using distributed fiber orientations, (Kassab, G. S.; Sacks, M. S., Structure-Based Mechanics of Tissues and Organs, (2016), Springer: Springer Wien, Heidelberg, New York, Dordrecht, London), 15-39
[13] Cowin, S. C.; Doty, S. B., Tissue Mechanics, (2007), Springer-Verlag · Zbl 1117.74002
[14] Cyron, C. J.; Humphrey, J. D., Growth and remodeling of load-bearing biological soft tissues, Meccanica, 52, 645-664, (2017)
[15] Cyron, C. J.; Aydin, R. C.; Humphrey, J. D., A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue, Biomechanics Model. Mechanobiol., 15, 1389-1403, (2016)
[16] De Pascalis, R.; Parnell, W. J.; Abrahams, I. D.; Shearer, T.; Daly, D. M.; Grundy, D., The inflation of viscoelastic balloons and hollow viscera, Proc. R. Soc. A, 474, 20180102, (2018) · Zbl 1407.74024
[17] Demirkoparan, H.; Pence, T. J.; Wineman, A., Chemomechanics and homeostasis in active strain stabilized hyperelastic fibrous microstructures, Int. J. Non-Linear Mech., 56, 86-93, (2013)
[18] Driessen, N. J.B.; Cox, M. A.J.; Bouten, C. V.C.; Baaijens, F. P.T., Remodelling of the angular collagen fiber distribution in cardiovascular tissues, Biomechanics Model. Mechanobiol., 7, 93-103, (2008)
[19] Flynn, B. P.; Bhole, A. P.; Saeidi, N.; Liles, M.; Dimarzio, C. A.; Ruberti, J. W., Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8), PLoS One, 5, Article e12337 pp., (2010)
[20] Fung, Y. C., Elasticity of soft tissues in simple elongation, Am. J. Physiol., 213, 1532-1544, (1967)
[21] Fung, Y. C.; Fronek, K.; Patitucci, P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., 237, H620-H631, (1973)
[22] Gasser, T. C.; Ogden, R. W.; Holzapfel, G. A., Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3, 15-35, (2006)
[23] Goriely, A., The Mathematics and Mechanics of Biological Growth, (2017), Springer: Springer New York · Zbl 1398.92003
[24] Gundiah, N.; Ratcliffe, M. B.; Pruitt, L. A., The biomechanics of arterial elastin, J. Mech. Behav. Biomed., 2, 288-296, (2009)
[25] Guo, Z. Y.; Peng, X. Q.; Moran, B., Mechanical response of neo-hookean fiber reinforced incompressible nonlinearly elastic solids, Int. J. Eng. Sci., 44, 1949-1969, (2006) · Zbl 1108.74011
[26] Hadi, M. F.; Sander, E. A.; Ruberti, J. W.; Barocas, V. H., Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant fiber growth, Mech. Mater., 44, 72-82, (2012)
[27] Hamedzadeh, A.; Gasser, T. C.; Federico, S., On the constitutive modelling of recruitment and damage of collagen fibres in soft biological tissues, Eur. J. Mech. A Solid., 72, 483-496, (2018) · Zbl 1406.74495
[28] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of arteries, Proc. R. Soc. A, 466, 1551-1596, (2010) · Zbl 1197.74075
[29] Holzapfel, G. A.; Ogden, R. W., Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues, Eur. J. Mech. A Solid., 66, 193-200, (2017) · Zbl 1406.74497
[30] Holzapfel, G. A.; Eberlein, R.; Wriggers, P.; Weizsäcker, H. W., Large strain analysis of soft biological membranes: formulation and finite element analysis, Comput. Methods Appl. Mech. Eng., 132, 45-61, (1996) · Zbl 0890.73051
[31] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1-48, (2000) · Zbl 1023.74033
[32] Hulmes, D. J.S., Collagen diversity, synthesis and assembly, (Fratzl, P., Collagen: Structure and Mechanics, (2008), Springer: Springer Boston, MA), 285-324
[33] Humphrey, J. D., Continuum biomechanics of soft biological tissues, Proc. R. Soc. Lond. A, 459, 3-46, (2003) · Zbl 1116.74385
[34] Humphrey, J. D.; Rajagopal, K. R., A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Methods Appl. Sci., 12, 407-430, (2002) · Zbl 1021.74026
[35] Kadler, K. E.; Holmes, D. F.; Trotter, J. A.; Chapman, J. A., Collagen fibril formation, Am. J. Obstet. Gynecol., 316, 1-11, (1996)
[36] Karšaj, I.; Sansour, C.; Soric, J., The modelling of fibre reorientation in soft tissue, Biomechanics Model. Mechanobiol., 8, 359-370, (2009)
[37] Kjær, M.; Langberg, H.; Heinemeier, K.; Bayer, M. L.; Hansen, M.; Holm, L.; Doessing, S.; Kongsgaard, M.; Krogsgaard, M. R.; Magnusson, S. P., From mechanical loading to collagen synthesis, structural changes and function in human tendon, Scand. J. Med. Sci. Sports, 19, 500-510, (2009)
[38] Kroon, M.; Holzapfel, G. A., A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms, J. Theor. Biol., 257, 73-83, (2009) · Zbl 1400.92097
[39] Lanir, Y., Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers, Biomechanics Model. Mechanobiol., 14, 245-266, (2015)
[40] Laurent, G. J., Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass, Am. J. Physiol., 252, C1-C9, (1987)
[41] Li, W.; Luo, X. Y., An invariant-based damage model for human and animal skins, Ann. Biomed. Eng., 44, 3109-3122, (2016)
[42] Licup, A. J.; Münster, S.; Sharma, A.; Sheinman, M.; Jawerth, L. M.; Fabry, B.; Weitz, D. A.; MacKintosh, F. C., Stress controls the mechanics of collagen networks, PNAS, 112, 9573-9578, (2015)
[43] Martufi, G.; Gasser, T. C., Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms, Interface, 9, 3366-3377, (2012)
[44] Melnik, A. V.; Goriely, A., Dynamic fiber reorientation in a fiber-reinforced hyperelastic material, Math. Mech. Solids, 18, 634-648, (2013)
[45] Merodio, J.; Ogden, R. W., Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation, Int. J. Solids Struct., 40, 4707-4727, (2003) · Zbl 1054.74721
[46] Myers, K. M.; Hendon, C. P.; Gan, Y.; Yao, W.; Yoshida, K.; Fernandez, M.; Vink, J.; Wapner, R. J., A continuous fiber distribution material model for human cervical tissue, J. Biomech., 48, 1533-1540, (2015)
[47] Ogden, R. W., Non-linear Elastic Deformations, (1984), Dover Publications: Dover Publications New York · Zbl 0541.73044
[48] Oyen, M. L.; Cook, R. F.; Stylianopoulos, T.; Barocas, V. H.; Calvin, S. E.; Landers, D. V., Uniaxial and biaxial mechanical behavior of human amnion, J. Mater. Res., 20, 2902-2909, (2005)
[49] Robitaille, M. C.; Zareian, R.; DiMarzio, C. A.; Wan, K. T.; Ruberti, J. W., Small- angle light scattering to detect strain-directed collagen degradation in native tissue, Interface Focus, 1, 767-776, (2011)
[50] Rodriquez, E. K.; Hoger, A.; McCulloch, A. D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 455-467, (1994)
[51] Shirazi, R.; Vena, P.; Sah, R. L.; Klisch, S. M., Modeling the collagen fibril network of biological tissues as a nonlinearly elastic material using a continuous volume fraction distribution function, Math. Mech. Solids, 16, 706-715, (2011) · Zbl 1269.74155
[52] Soares, J. S.; Rajagopal, K. R.; Moore, J. E., Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus, Biomechanics Model. Mechanobiol., 9, 177-186, (2010)
[53] Stoffel, M.; Yi, J. H.; Weichert, D.; Zhou, B.; Nebelung, S.; Müller-Rath, R.; Gavenis, K., Bioreactor cultivation and remodelling simulation for cartilage replacement material, Med. Eng. Phys., 34, 56-63, (2011)
[54] Susilo, M. E.; Paten, J. A.; Sander, E. A.; Nguyen, T. D.; Ruberti, J. W., Collagen network strengthening following cyclic tensile loading, Interface Focus, 6, 20150088, (2016)
[55] Thorpe, C. T.; Streeter, I.; Pinchbeck, G. L.; Goodship, A. E.; Clegg, P. D.; Birch, H. L., Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging, J. Biol. Chem., 285, 15674-15681, (2010)
[56] Topol, H.; Demirkoparan, H.; Pence, T. J.; Wineman, A., A theory for deformation dependent evolution of continuous fiber distribution applicable to collagen remodeling, IMA J. Appl. Math., 79, 947-977, (2014) · Zbl 1305.74062
[57] Topol, H.; Demirkoparan, H.; Pence, T. J.; Wineman, A., Time-evolving collagen-like structural fibers in soft tissues: biaxial loading and spherical inflation, Mech. Time-Dependent Mater., 21, 1-29, (2017)
[58] Topol, H.; Gou, K.; Demirkoparan, H.; Pence, T. J., Hyperelastic modeling of the combined effects of tissue swelling and deformation-related collagen renewal in fibrous soft tissue, Biomechanics Model. Mechanobiol., 17, 1543-1567, (2018)
[59] Ushiki, T., Collagen fibers, reticular fibers and elastic fibers. a comprehensive understanding from a morphological viewpoint, Arch. Histol. Cytol., 65, 109-126, (2002)
[60] Verzij, N.; DeGroot, J.; Thorpe, S. R.; Bank, R. A.; Shaw, J. N.; Lyons, T. J.; Bijlsma, J. W.J.; Lafeber, F. P.J. G.; Baynes, J. W.; TeKoppele, J. M., Effect of collagen turnover on the accumulation of advanced glycation end products, J. Biol. Chem., 275, 39027-39031, (2000)
[61] Volokh, K. Y., Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening, J. Biomech., 41, 447-453, (2008)
[62] Wang, F.; Garza, L. A.; Kang, S.; Varani, J.; Orringer, J. S.; Fisher, G. J.; Voorhees, J. J., In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin, Arch. Dermatol., 143, 155-163, (2007)
[63] Watton, P. N.; Ventikos, Y.; Holzapfel, G. A., Modelling the mechanical response of elastin for arterial tissue, J. Biomech., 42, 1320-1325, (2009)
[64] Wess, T. J., Collagen fibrillar structure and hierarchies, (Fratzl, P., Collagen: Structure and Mechanics, (2008), Springer: Springer Boston, MA), 285-324
[65] Xu, J.; Shi, G.-P., Vascular wall extracellular matrix proteins and vascular diseases, BBA - Mol. Basis Dis., 1842, 2106-2119, (2014)
[66] Zeinali-Davarani, S.; Sheidaei, A.; Baek, S., A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms, Comput. Method Biomec., 14, 803-817, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.