×

Molecular dynamics simulation and size dependent cylindrical shell models for vibrations of spinning axially loaded carbon nanotubes. (English) Zbl 1472.74085

Summary: Today nanotubes are main parts of nano-machines who withstand against axial and vibrational loads. So, in this paper a mathematical model is presented to predict behavior of a spinning nanotube under axial load. For this purpose, classical thin shell theory and first order shear deformation shell theory are combined with nonlocal stress theory. The effect of rotation is considered by adding centrifugal and Coriolis forces in the formulations. Also, effect of axial compressive load is added in the formulation by considering buckling energy term. Equations are solved for both theories and numerical results are compared with the literature for validation. In the case of buckling of spinning nanotube there is not sufficient numerical results for comparison. So, Molecular dynamics (MD) simulation is done and its results in stationary and rotating conditions are compared with the mathematical model. These comparisons approved validity and accuracy of the mathematical models. Finally, effect of changing different parameters on the behavior of nanotube is investigated.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akgöz, B.; Civalek, Ö., Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci., 8, 9, 1821-1827 (2011)
[2] Akgöz, B.; Civalek, Ö., A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation, Compos. Struct., 176, 1028-1038 (2017)
[3] Ansari, R.; Gholami, R.; Darabi, M., Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory, J. Therm. Stress., 34, 12, 1271-1281 (2011)
[4] Ansari, R.; Rouhi, H.; Mirnezhad, M., A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes, Curr. Appl. Phys., 14, 10, 1360-1368 (2014)
[5] Arabghahestani, M.; Karimian, S., Molecular dynamics simulation of rotating carbon nanotube in uniform liquid argon flow, J. Mol. Liq., 225, 357-364 (2017)
[6] Aranda-Ruiz, J.; Loya, J.; Fernández-Sáez, J., Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory, Compos. Struct., 94, 9, 2990-3001 (2012)
[7] Atanackovic, T. M.; Novakovic, B. N.; Vrcelj, Z.; Zorica, D., Rotating nanorod with clamped ends, Int. J. Struct. Stab. Dyn., 15, 03, 1450050 (2015) · Zbl 1359.74190
[8] Atanackovic, T. M.; Zorica, D., Stability of the rotating compressed nano‐rod, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., 94, 6, 499-504 (2014)
[9] Bourlon, B.; Glattli, D. C.; Miko, C.; Forró, L.; Bachtold, A., Carbon nanotube based bearing for rotational motions, Nano Lett., 4, 4, 709-712 (2004)
[10] Cai, K.; Cai, H.; Ren, L.; Shi, J.; Qin, Q.-H., Over-speeding rotational transmission of a carbon nanotube-based bearing, J. Phys. Chem. C, 120, 10, 5797-5803 (2016)
[11] Chan, Y.; Thamwattana, N.; Hill, J. M., Axial buckling of multi-walled carbon nanotubes and nanopeapods, Eur. J. Mech. A Solid., 30, 6, 794-806 (2011) · Zbl 1278.74061
[12] Chang, T., A molecular based anisotropic shell model for single-walled carbon nanotubes, J. Mech. Phys. Solids, 58, 9, 1422-1433 (2010)
[13] Cook, E.; Weinberg, M.; Spakovszky, Z.; Carter, D., Fabrication of a rotary carbon nanotube bearing test apparatus, (Paper Presented at the Journal of Physics: Conference Series (2015))
[14] Cook, E. H.; Buehler, M. J.; Spakovszky, Z. S., Mechanism of friction in rotating carbon nanotube bearings, J. Mech. Phys. Solids, 61, 2, 652-673 (February 2013)
[15] Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W.; Feringa; B. L., Molecular machines: nanomotor rotates microscale objects, Nature, 440, 7081 (2006), 163-163
[16] Eftekhari, M.; Mohammadi, S.; Khoei, A. R., Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes, Comput. Mater. Sci., 79, 736-744 (2013)
[17] Eringen, A. C., Nonlocal Continuum Field Theories (2002), Springer · Zbl 1023.74003
[18] Fazelzadeh, S.; Ghavanloo, E., Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality, Compos. Struct., 94, 3, 1016-1022 (2012)
[19] Garg, A.; Vijayaraghavan, V.; Lam, J. S.L.; Singru, P. M.; Gao, L., A molecular simulation based computational intelligence study of a nano-machining process with implications on its environmental performance, Swarm Evolut. Comput., 21, 54-63 (2015)
[20] Ghadiri, M.; Shafiei, N., Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method, Microsyst. Technol., 1-15 (2015)
[21] Ghavamian, A.; Öchsner, A., Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes, Phys. E Low-dimens. Syst. Nanostruct., 46, 241-249 (2012)
[22] Han, J.; Globus, A.; Jaffe, R.; Deardorff, G., Molecular dynamics simulations of carbon nanotube-based gears, Nanotechnology, 8, 3, 95 (1997)
[23] Han, Q.; Lu, G., Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium, Eur. J. Mech. A Solid., 22, 6, 875-883 (2003) · Zbl 1032.74557
[24] Hao, M.; Guo, X.; Wang, Q., Small-scale effect on torsional buckling of multi-walled carbon nanotubes, Eur. J. Mech. A Solid., 29, 1, 49-55 (2010) · Zbl 1476.74042
[25] Hosseini-Hashemi, S.; Ilkhani, M., Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory, Compos. Struct., 157, 1-11 (2016)
[26] Hosseini-Hashemi, S.; Ilkhani, M., Nonlocal modeling for dynamic stability of spinning nanotube under axial load, Meccanica, 1-15 (2016)
[27] Hosseini-Hashemi, S.; Ilkhani, M.; Fadaee, M., Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell, Int. J. Mech. Sci., 76, 9-20 (2013)
[28] Ilkhani, M.; Hosseini-Hashemi, S., Size dependent vibro-buckling of rotating beam based on modified couple stress theory, Compos. Struct., 143, 75-83 (2016)
[29] Jam, J.; Kiani, Y., Buckling of pressurized functionally graded carbon nanotube reinforced conical shells, Compos. Struct., 125, 586-595 (2015)
[30] Kiani, K., Stress analysis of thermally affected rotating nanoshafts with varying material properties, Acta Mech. Sin., 1-15 (2016) · Zbl 1361.74005
[31] Lei, Z.; Liew, K. M.; Yu, J., Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Compos. Struct., 98, 160-168 (2013) · Zbl 1352.74165
[32] Lohrasebi, A.; Jamali, Y., Computational modeling of a rotary nanopump, J. Mol. Graph. Model., 29, 8, 1025-1029 (2011)
[33] Lohrasebi, A.; Rafii-Tabar, H., Computational modeling of an ion-driven nanomotor, J. Mol. Graph. Model., 27, 2, 116-123 (2008)
[34] Lv, Z.; Liu, H., Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment, Compos. Struct., 184, 1165-1176 (2018)
[35] Mercan, K.; Civalek, Ö., DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix, Compos. Struct., 143, 300-309 (2016)
[36] Narendar, S.; Gopalakrishnan, S., Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics, Phys. E Low-dimens. Syst. Nanostruct., 43, 6, 1185-1191 (2011)
[37] Narendar, S.; Gopalakrishnan, S., Nonlocal wave propagation in rotating nanotube, Res. Phys., 1, 1, 17-25 (2011)
[38] Pradhan, S.; Murmu, T., Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Phys. E Low-dimens. Syst. Nanostruct., 42, 7, 1944-1949 (2010)
[39] Pradhan, S.; Reddy, G., Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50, 3, 1052-1056 (2011)
[40] Santamaría-Holek, I.; Reguera, D.; Rubi, J. M., Carbon-nanotube-based motor driven by a thermal gradient, J. Phys. Chem. C, 117, 6, 3109-3113 (2013)
[41] Shafiei, N.; Kazemi, M.; Ghadiri, M., Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s nonlocal elasticity and DQM, Appl. Phys. A, 122, 8, 1-18 (2016)
[42] Shen, H.-S., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Compos. B Eng., 43, 3, 1030-1038 (2012)
[43] Srivastava, D., A phenomenological model of the rotation dynamics of carbon nanotube gears with laser electric fields, Nanotechnology, 8, 4, 186 (1997)
[44] Stuart, S. J.; Tutein, A. B.; Harrison, J. A., A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 14, 6472-6486 (2000)
[45] Sun, C.; Liu, K., Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium, Eur. J. Mech. A Solid., 27, 1, 40-49 (2008) · Zbl 1184.74035
[46] Takagi, Y.; Uda, T.; Ohno, T., Carbon nanotube motors driven by carbon nanotube, J. Chem. Phys., 128, 19, 194704 (2008)
[47] Torkaman-Asadi, M.; Rahmanian, M.; Firouz-Abadi, R., Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations, Compos. Struct., 126, 52-61 (2015)
[48] Tu, Z.; Hu, X., Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage, Phys. Rev. B, 72, 3, Article 033404 pp. (2005)
[49] Wang, B.; Vuković, L.; Král, P., Nanoscale rotary motors driven by electron tunneling, Phys. Rev. Lett., 101, 18, 186808 (2008)
[50] Wang, C. M.; Zhang, Y.; Xiang, Y.; Reddy, J., Recent studies on buckling of carbon nanotubes, Appl. Mech. Rev., 63, 3, Article 030804 pp. (2010)
[51] Wang, Q.; Liew, K. M., Molecular mechanics modeling for properties of carbon nanotubes, J. Appl. Phys., 103, 4, Article 046103 pp. (2008)
[52] Yao, X.; Han, Q., The thermal effect on axially compressed buckling of a double-walled carbon nanotube, Eur. J. Mech. A Solid., 26, 2, 298-312 (2007) · Zbl 1125.74020
[53] Zhang, C.-L.; Shen, H.-S., Thermal buckling of initially compressed single-walled carbon nanotubes by molecular dynamics simulation, Carbon, 45, 13, 2614-2620 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.