×

zbMATH — the first resource for mathematics

Boundary moving least square method for 2D elasticity problems. (English) Zbl 1464.74281
Summary: This paper applies the boundary moving least square (BMLS) method for numerical implementation of two-dimensional (2D) elasticity problems. Compared with traditional mesh-free methods, the new discrete BMLS method is adopted to simplify shape functions. The discrete equations for elasticity problems are established in each of coordinate system. Then the 2D shape functions are simplified to one-dimensional (1D) shape functions in the BMLS. The introduction of moving least square (MLS) ensures BMLS maintains high accuracy with moderate computation cost. Furthermore, the advantages of BMLS are illustrated by four examples.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yan, G.; Chuanzeng, Z.; Wenzhen, Q.; Jieyu, D., Investigation on near-boundary solutions for three-dimensional elasticity problems by an advanced BEM, Int J Mech Sci, 142-143, 269-275, (2018)
[2] Gu, Y.; Chen, W.; Gao, H. W.; Zhang, C., A meshless singular boundary method for three-dimensional elasticity problems, Int J Numer Methods Eng, 107, 109-126, (2016) · Zbl 1352.74039
[3] Gu, Y.; Chen, W.; Zhang, B., Stress analysis for two-dimensional thin structural problems using the meshless singular boundary method, Eng Anal Bound Elem, 59, 1-7, (2015) · Zbl 1403.74057
[4] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 141-158, (1981) · Zbl 0469.41005
[5] Luo, J. F.; Liu, Y. J.; Berger, E. J., Analysis of two-dimensional thin structures (from micro- to nan0-scales) using the boundary element method, Comput Mech, 22, 404-412, (1998) · Zbl 0938.74075
[6] Li, J. P.; Chen, W., Singular boundary method based on time-dependent fundamental solutions for active noise control, Numer Methods Partial Differ Equ, 34, 1401-1421, (2018) · Zbl 1407.76091
[7] Li, J. P.; Chen, W.; Gu, Y., Error bounds of singular boundary method for potential problems, Numer Method Partial Differ Equ, 33, 1987-2004, (2017) · Zbl 1390.65156
[8] Folws, R.; Willians, R. F., Plane wave propagation in solids, J Appl Phys, 6, 4, 264-270, (1970)
[9] Lin, J.; Chen, C. S.; Liu, C. S.; Lu, J., Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions, Comput Math Appl, 72, 3, 555-567, (2016) · Zbl 1359.65222
[10] Lin, J.; Zhang, C.; Sun, L.; Lu, J., Simulation of seismic wave scattering by embedded cavities inan elastic half-plane using the novel singular boundary method, Adv Appl Math Mech, 10, 2, 322-342, (2018)
[11] Lin, J.; Reutskiy, S.; Lu, J., A novel meshless method for fully nonlinearadvection-diffusion-reaction problems to model transfer in anisotropic media, Appl Math Comput, 339, 459-476, (2018)
[12] Li, J. P.; Chen, W., A modified singular boundary method for three-dimensional high frequency acoustic wave problems, Appl Math Model, 54, 189-201, (2018)
[13] Onate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L., A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int J Numer Methods Eng, 39, 3839-3866, (1996) · Zbl 0884.76068
[14] Xu, W.; Jiao, Y., Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3D non-spherical pores, Int J Eng Sci, 134, 31-46, (2019) · Zbl 1423.82012
[15] Xu, W.; Wu, F.; Jiao, Y.; Liu, M., A general micromechanical framework of effective moduli for the design of nonspherical nano- and micro-particle reinforced composites with interface properties, Mater Des, 127, 162-172, (2017)
[16] Bitaraf, M.; Mohammadi, S., Large deflection analysis of flexible plates by the meshless finite point method, Thin Wall Struct, 48, 200-214, (2010)
[17] Johnson, G. R.; Stryk, R. A.; Beissel, S. R., SPH for high velocity impact computations, Comput Methods Appl Mech Eng, 139, 347-373, (1996) · Zbl 0895.76069
[18] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[19] Belytschko, T.; Krongauz, Y., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1993) · Zbl 0891.73075
[20] Belyschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[21] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 937-951, (2001) · Zbl 1050.74057
[22] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Eng Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[23] Liu, W. K.; Chen, Y.; Aziz, U. R., Generalized multiple scale reproducing kernel particle methods, Comput Methods Appl Mech Eng, 139, 91-157, (1996) · Zbl 0896.76069
[24] Duarte, C. A.; Oden, J. T., HP clouds: an h-p meshless method, Numer Methods Partial Differ Equ, 12, 673-705, (1996) · Zbl 0869.65069
[25] Zhang, A. X.; Gu, Y.; Hua, Q. S.; Chen, W.; Zhang, C. Z., A regularized singular boundary method for inverse Cauchy problem in three-dimensional elastostatics, Adv Appl Math Mech, 10, 6, 1459-1477, (2018)
[26] Gu, Y.; He, X. Q.; Chen, W.; Zhang, C. Z., Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method, Comput Math Appl, 75, 33-44, (2018) · Zbl 1416.80006
[27] Z.T. Huang, D. Lei, Y. Wang, Modified moving least square collocation method for solving wave equation. Adv Appl Math Mech, 11(1): 1-17
[28] Gu, Y. T.; Liu, G. R., A boundary point interpolation method for stress analysis of solids, Comput Mech, 28, 1, 47-54, (2002) · Zbl 1115.74380
[29] Gu, Y. T.; Liu, G. R., A boundary radial point interpolation method (BRPIM) for 2-D structural analyses, Struct Eng Mech, 15, 5, 535-550, (2003)
[30] Gu, Y. T.; Liu, G. R., Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method, Eng Anal Bound Elem, 27, 9, 905-917, (2003) · Zbl 1060.74651
[31] Liu, G. R.; Gu, Y. T., Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation, Comput Mech, 26, 2, 166-173, (2000) · Zbl 0994.74078
[32] Liu, G. R.; Gu, Y. T., Boundary meshfree methods based on the boundary point interpolation methods, Eng Anal Bound Elem, 28, 5, 475-487, (2004) · Zbl 1130.74466
[33] Onate, E.; Perazzo, F.; Miquel, J., A finite point method for elasticity problems, Comput Struct, 79, 2151-2163, (2001)
[34] Bui, T. Q.; Nguyen, T. N.; Nguyen-Dang, H., A moving Kriging interpolation-based meshless method fir numerical simulation of Kirchhoff plate problems, Int J Numer Methods Eng, 77, 1371-1395, (2009) · Zbl 1156.74391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.