×

zbMATH — the first resource for mathematics

Element-free Galerkin scaled boundary method based on moving Kriging interpolation for steady heat conduction analysis. (English) Zbl 07110354
Summary: This paper develops an element-free Galerkin scaled boundary method (EFG-SBM) for solving steady heat conduction problems, in which the circumferential direction is constructed by the moving Kriging (MK) interpolation based on the EFG approach. Because the MK interpolation satisfies the Kronecker delta property, it is more convenient in enforcing the essential boundary conditions than the traditional MLS-based EFG-SBM. As a newly boundary-type meshless method, EFG-SBM possesses advantages of EFG and scaled boundary finite element method (SBFEM). This method inherits the semi-analytical property of SBFEM by introducing the normalized radial coordinate system, in which the governing differential equations are weakened in the circumferential direction and solved analytically in the radial direction. Unlike the traditional SBFEM, the preprocessing and postprocessing processes of EFG-SBM are simplified and the more accuracy can be obtained because of higher continuity of the MK shape functions. Computation of EFG-SBM can be reduced since only the boundary needs to be discretized compared with the EFG approach. This proposed method is verified via four heat conduction examples including problems with thermal crack considering the prescribed heat flux and temperature on the side-face and unbounded domain. The numerical solutions show that EFG-SBM has higher accuracy and better convergence than the traditional SBFEM. An accurate smooth heat flux can be obtained directly without necessity of using the recovery procedure.

MSC:
80M15 Boundary element methods applied to problems in thermodynamics and heat transfer
65N38 Boundary element methods for boundary value problems involving PDEs
80A19 Diffusive and convective heat and mass transfer, heat flow
Software:
Mfree2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Minkowycz, W. J.; Sparrow, E. M.; Murthy, J. Y., Handbook of numerical heat transfer, (2006), John Wiley & Sons: John Wiley & Sons Chichester
[2] Tao, W. Q., Numerical heat transfer, (2001), Xi’an Jiaotong University Press: Xi’an Jiaotong University Press Xi’an
[3] Wilson, E. L.; Nickell, R. E., Application of the finite element method to heat conduction analysis, Nucl Eng Des, 4, 3, 276-286, (1966)
[4] Lewis, R. W.; Morgan, K.; Thomas, H. R.; Seetharamu, K. N., The finite element method in heat transfer analysis, (1996), Chichester: John Wiley & Sons · Zbl 0847.65072
[5] Kanjanakijkasem, W., A finite element method for prediction of unknown boundary conditions in two-dimensional steady-state heat conduction problems, Int J Heat Mass Transf, 88, 891-901, (2015)
[6] Yang, K.; Feng, W.; Wang, J.; Gao, X., RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity, Eng Anal Bound Elem, 87, 1-8, (2018) · Zbl 1403.80030
[7] Guo, S.; Li, X.; Zhang, J.; Bin, G.; Huang, W., A triple reciprocity method in Laplace transform boundary element method for three-dimensional transient heat conduction problems, Int J Heat Mass Tranf, 114, 258-267, (2017)
[8] Gu, Y.; He, X.; Chen, W.; Zhang, C., Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method, Comput Math. Appl, 75, 1, 33-44, (2018) · Zbl 1416.80006
[9] Chen, W. H.; Ting, K., Finite element analysis of transient thermoelastic fracture problems, Comput Mech, 86, 1063-1069, (1986)
[10] Tsang, D. K.L.; Oyadiji, S. O.; Leung, A. Y.T., Two-dimensional fractal-like finite element method for thermoelastic crack analysis, Int J Solids Struct, 44, 24, 7862-7876, (2007) · Zbl 1167.74589
[11] Lesnic, D.; Elliott, L.; Ingham, D. B., Treatment of singularities in time-dependent problems using the boundary element method, Eng Anal Bound Elem, 16, 1, 65-70, (1995)
[12] Mukhopadhyay, N. K.; Maiti, S. K.; Kakodkar, A., Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM, Eng Fract Mech, 64, 2, 141-159, (1999)
[13] Han, H.; Huang, Z., Exact and approximating boundary conditions for the parabolic problems on unbounded domains, Comput Math Appl, 44, 655-666, (2002) · Zbl 1030.35092
[14] Wu, X.; Sun, Z. Z., Convergence of difference schemes for heat equation in unbounded domains using artificial boundary conditions, Appl Numer Math, 50, 2, 261-277, (2004) · Zbl 1053.65074
[15] Lewis, R. W.; Morgen, K., Numerical methods in thermal problems, (1989), Swansea: Pineridge Press
[16] Shaw, R. P., An integral equation approach to diffusion, Int J Heat Mass Transf, 17, 6, 693-699, (1974)
[17] Singh, K. M.; Kalra, M. S., Least squares finite element formulation in the time domain for the dual reciprocity boundary element method in heat conduction, Comput Methods Appl Mech Eng, 104, 2, 147-172, (1993) · Zbl 0782.73071
[18] Simões, N.; Tadeu, A., Fundamental solutions for transient heat transfer by conduction and convection in an unbounded, half-space, slab and layered media in the frequency-domain, Eng Anal Bound Elem, 29, 12, 1130-1142, (2005) · Zbl 1182.76956
[19] Wolf, J. P.; Song, C., Finite-element modelling of unbounded media, (1996), John Wiley: John Wiley Chichester · Zbl 0879.73002
[20] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput Methods Appl Mech Eng, 147, 329-355, (1997) · Zbl 0897.73069
[21] Song, C., Analysis of singular stress fields at multi-material corners under thermal loading, Int J Numer Methods Eng, 65, 620-652, (2006) · Zbl 1152.74019
[22] Birk, C.; Song, C., A continued-fraction approach for transient diffusion in unbounded medium, Comput Methods Appl Mech Eng, 198, 2576-2590, (2009) · Zbl 1228.76080
[23] Li, P.; Liu, J.; Lin, G.; Zhang, P.; Xu, B., A combination of isogeometric technique and scaled boundary method for the solution of the steady-state heat transfer problems in arbitrary plane domain with Robin boundary, Eng Anal Bound Elem, 82, 43-56, (2017) · Zbl 1403.80021
[24] Bazyar, M. H.; Talebi, A., Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems, Appl Math Model, 39, 7583-7599, (2015)
[25] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 1, 3-47, (1996) · Zbl 0891.73075
[26] Liu, G. R., Mesh free methods: moving beyond the finite element method, (2002), CRC Press: CRC Press Boca Raton
[27] Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming, (2005), Springer: Springer Netherlands
[28] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[29] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 2, 117-127, (1998) · Zbl 0932.76067
[30] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[31] Chen, S. S.; Xu, C. J.; Tong, G. S.; Wei, X., Free vibration of moderately thick functionally graded plates by a meshless local natural neighbour interpolation method, Eng Anal Bound Elem, 61, 114-126, (2015) · Zbl 1403.74296
[32] Chen, S. S.; Xu, C. J.; Tong, G. S., A meshless local natural neighbour interpolation method to modeling of functionally graded viscoelastic materials, Eng Anal Bound Elem, 52, 92-98, (2015) · Zbl 1403.74295
[33] Chen, S. S.; Li, Q. H.; Liu, Y. H.; Xia, J. T.; Xue, Z. Q., Dynamic elastoplastic analysis using the meshless local natural neighbour interpolation method, Int J Comput Methods, 8, 3, 463-481, (2011) · Zbl 1245.74006
[34] Deeks, A. J.; Augarde, C. E., A meshless local Petrov-Galerkin scaled boundary method, Comput Mech, 36, 3, 159-170, (2005) · Zbl 1138.74418
[35] Deeks, A. J.; Augarde, C. E., A hybrid meshless local Petrov-Galerkin method for unbounded domains, Comput Methods Appl Mech Eng, 196, 843-852, (2007) · Zbl 1121.74471
[36] He, Y.; Yang, H.; Deeks, A. J., An element-free Galerkin (EFG) scaled boundary method, Finite Elem Anal Des, 62, 28-36, (2012)
[37] He, Y.; Yang, H.; Deeks, A. J., An element-free Galerkin scaled boundary method for steady-state heat transfer problems, Numer Heat Transf B, 64, 199-217, (2013)
[38] He, Y.; Yang, H.; Deeks, A. J., Determination of coefficients of crack tip asymptotic fields by an element-free Galerkin scaled boundary method, Fatigue Fract Eng Mater Struct, 35, 8, 767-785, (2012)
[39] Li, Q.; Chen, S.; Luo, X., Steady heat conduction analyses using an interpolating element-free Galerkin scaled boundary method, Appl Math Comput, 300, 103-115, (2017) · Zbl 1411.80004
[40] Gu, L., Moving kriging interpolation and element-free Galerkin method. Int, J Numer Methods Eng, 56, 1, 1-11, (2003) · Zbl 1062.74652
[41] Stein, M. L., Interpolation of spatial data-some theory for kriging, (1999), Springer: Springer Berlin · Zbl 0924.62100
[42] Zheng, B.; Dai, B., A meshless local moving Kriging method for two-dimensional solids, Appl Math Comput, 218, 2, 563-573, (2011) · Zbl 1275.74033
[43] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless local Kriging (LoKriging) method for structural dynamic analysis, Comput Methods Appl Mech Eng, 193, 2599-2619, (2004) · Zbl 1067.74598
[44] Chen, L.; Liew, K. M., A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput Mech, 47, 4, 455-467, (2011) · Zbl 1241.80005
[45] Li, X.; Dai, B.; Wang, L., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin Phys B, 19, 12, Article 120202 pp., (2010)
[46] Chen, S.; Li, Q.; Liu, Y., A scaled boundary node method applied to two-dimensional crack problems, Chin Phys B, 21, 11, Article 110207 pp., (2012)
[47] Zhu, P.; Liew, K. M., Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method, Compos Struct, 93, 11, 2925-2944, (2011)
[48] Deeks, A. J., Prescribed side-face displacements in the scaled boundary finite-element method, Comput Struct, 82, 15, 1153-1165, (2004)
[49] Bouhala, L.; Makradi, A.; Belouettar, S., Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method, Eng Fract Mech, 88, 35-48, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.