×

zbMATH — the first resource for mathematics

On the quality of viscoelastic flow solutions: An adaptive refinement study of a Newtonian and a Maxwell fluid. (English) Zbl 0711.76005

MSC:
76A10 Viscoelastic fluids
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bieterman, J. Comput. Phys. 63 pp 33– (1986)
[2] Kikuchi, Comput. Methods Appl. Mech. Eng. 55 pp 129– (1986)
[3] Frey, Int. j. numer. methods eng. 24 pp 2183– (1987)
[4] Peraire, J. Comput. Phys. 72 pp 449– (1987)
[5] Zhu, Commun. Appl. Numer. Methods 4 pp 197– (1988)
[6] Albert, Int. j. numer. methods eng. 23 pp 591– (1986)
[7] , ’Optimization of finite element solution’, Proc. Third Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Dayton, OH, 1971.
[8] Kikuchi, Comput. Methods Appl. Mech. Eng. 57 pp 67– (1986)
[9] Diaz, Comput. Methods Appl. Mech. Eng. 41 pp 29– (1983)
[10] Eiseman, Ann. Rev. Fluid Mech. 17 pp 487– (1985)
[11] Szabo, Int. j. numer. methods eng. 12 pp 551– (1978)
[12] Babuška, Int. j. numer. methods eng. 18 pp 323– (1982)
[13] and , ’Accurate finite element analysis’, in (ed.), Finite Element Handbook, McGraw-Hill, 1987, pp. 3.401-3.444.
[14] Guo, Comput. Mech. 1 pp 21– (1986)
[15] Lohner, Int. j. numer. methods eng. 24 pp 1741– (1987)
[16] Rivara, Int. j. numer. methods eng. 24 pp 1343– (1987)
[17] Zienkiewicz, Int. j. numer. methods eng. 25 pp 23– (1988)
[18] Presented at Int. Conf. of Computational Methods in Flow Analysis, Okayama, Japan, 1988.
[19] ’Automatic mesh generation and adaptive analysis’, in (ed.), Finite Element Handbook, McGraw-Hill, 1987, pp. 4.190-4.207.
[20] and , ’Adaptive refinement for calculating viscoelastic flow problems’, in and (eds), Proc. Fifth Symp. of Finite Element and Flow Problems, Univ. Texas at Austin Press, Austin, TX, 1984, pp. 473-478.
[21] and , ’A survey ofa posteriori error estimators and adaptive approaches in the finite element method’, in Proc. China-France Symp. on Finite Element Methods, Beijing, 1983, Gordon and Breach, New York, pp. 1-65.
[22] Zienkiewicz, Int. j. numer. methods eng. 24 pp 337– (1987)
[23] Turke, Comput. Struct. 4 pp 499– (1974)
[24] Presented at Int. Conf. of Computational Methods in Flow Analysis, Okayama, Japan, 1988.
[25] Lohner, Comput. Methods. Appl. Mech. Eng. 51 pp 441– (1985)
[26] Luchini, J. Comput. Phys. 68 pp 283– (1987)
[27] Carey, Int. j. numer. methods eng. 17 pp 1717– (1981)
[28] Babuška, Comput. Methods Appl. Mech. Eng. 17/18 pp 519– (1979)
[29] Kelly, Int. j. numer. methods eng. 24 pp 1921– (1987)
[30] Babuška, Int. j. numer. methods eng. 12 pp 1597– (1978)
[31] Bieterman, Numer. Math. 40 pp 339– (1982)
[32] Bieterman, Numer. Math. 40 pp 373– (1982)
[33] Brown, Comput. Methods. Appl. Mech. Eng. 58 pp 201– (1986)
[34] and , ’On the quality of viscoelastic flow solutions’, Proc. Int. Conf. of Computational Methods in Flow Analysis, Okayama, 1988, pp. 266-273.
[35] Bykat, Int. j. numer. methods eng. 11 pp 194– (1977)
[36] King, J. Non-Newtonian Fluid Mech. 29 pp 147– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.