×

zbMATH — the first resource for mathematics

Petri nets are monoids. (English) Zbl 0711.68077
A new definition of place/transition Petri nets as graphs with the operation of parallel and sequential composition on the transitions is given. New morphisms, relating system description at different level of abstractions, and new constructions, like function space for Petri nets, are defined. Categories equipped with products and coproducts are introduced for Petri nets. A tensor product is also defined on nets, and net category is proved to be symmetric monoidal closed.
Reviewer: R.Janicki

MSC:
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benson, D.B., The basic algebraic structures in categories of derivations, Inform. and comput., 28, 1-29, (1975) · Zbl 0304.68083
[2] Best, E.; Devillers, R., Sequential and concurrent behaviour in Petri net theory, Theoret. comput. sci., 55, 87-136, (1987) · Zbl 0669.68043
[3] Boudol, G.; Castellani, I., Concurrency and atomicity, Theoret. comput. sci., 59, 25-84, (1988) · Zbl 0678.68078
[4] Degano, P.; De Nicola, R.; Montanari, U., A distributed operational semantics for CCS based on condition/event systems, Acta inform., 26, 59-91, (1988) · Zbl 0656.68061
[5] Degano, P.; Meseguer, J.; Montanari, U., Axiomatizing net computations and processes, (), 175-185
[6] Degano, P.; Meseguer, J.; Montanari, U., (), Technical Report SRI Int., Menlo Park and Dipartimento di Informatica, Pisa
[7] Degano, P.; Montanari, U., Specification languages for distributed systems, (), 29-51
[8] Degano, P.; Montanari, U., Concurrent histories: A basis for observing distributed systems, J. comput. system sci., 34, Nos. 2/3, 422-461, (1987) · Zbl 0619.68017
[9] Drees, S.; Gomm, D.; Plünnecke, H.; Reisig, W.; Walter, R., Bibliography of net theory, ()
[10] Eilenberg, S.; Moore, J.C., Adjoint functors and triples, Illinois J. math., 9, 381-398, (1965) · Zbl 0135.02103
[11] Goguen, J.; Kirchner, C.; Meseguer, J., Concurrent term rewriting as a model of computation, (), 53-93
[12] Goltz, U.; Reisig, W., The nonsequential behavior of Petri nets, Inform. and comput., 57, 125-147, (1983) · Zbl 0551.68050
[13] Herold, A.; Siekmann, J., Unification in abelian semigroups, J. automated reasoning, 3, 247-283, (1987) · Zbl 0637.68106
[14] Herrlich, H.; Strecker, G.E., ()
[15] Hinderer, W., Transfer of graph constructs in Goguen’s paper to net constructs, (), 142-150
[16] Hotz, G.; Hotz, G., Eine algebraisierung des syntheseproblemen von schaltkreisen, i and ii, Eik, Eik, 1, 209-231, (1965) · Zbl 0199.04504
[17] Kock, A., Closed categories generated by commutative monads, J. austral. math. soc., 12, 405-424, (1971) · Zbl 0244.18007
[18] Lawvere, F.W., Quantifiers and sheaves, (), 329-334 · Zbl 0261.18010
[19] Lawvere, F.W., Qualitative distinctions between some toposes of generalized graphs, () · Zbl 0675.18003
[20] Linton, F.E.J., Autonomous equational categories, J. math. mech., 15, 637-642, (1966) · Zbl 0146.25104
[21] MacLane, S., ()
[22] MacLane, S.; Birkhoff, G., Algebra, (1967), Macmillan New York · Zbl 0153.32401
[23] Main, M.G.; Benson, D.B., Functional behaviour of nondeterministic and concurrent programs, Inform. and comput., 62, 144-189, (1984) · Zbl 0591.68018
[24] Manes, E., Algebraic theories, () · Zbl 0353.18007
[25] Meseguer, J., Rewriting as a unified model of concurrency, (), February 1990
[26] Meseguer, J.; Montanari, U., Petri nets are monoids: A new algebraic foundation for net theory, (), 155-164
[27] Meseguer, J.; Sols, I., Automata in semimodule categories, (), 193-198 · Zbl 0307.94040
[28] Milner, R., Lectures on a calculus for communicating systems, (), 205-228
[29] Milner, R., (), February
[30] Olderog, E.-R., Operational Petri net semantics for ccsp, (), 196-223
[31] Petri, C.A., Concepts of net theory, (), 137-146 · Zbl 1027.68642
[32] Reisig, W., ()
[33] van Glabbeek, R.; Vaandrager, F., Petri net model for algebraic theories of concurrency, () · Zbl 0633.68054
[34] Winkowski, J., An algebraic description of system behaviours, Theoret. comput. sci., 21, 315-340, (1982) · Zbl 0493.68049
[35] Winskel, G., Categories of models for concurrency, () · Zbl 0567.68017
[36] Winskel, G., (), July
[37] Winskel, G., Petri nets, algebras, morphisms, and compositionality, Inform. and comput., 72, 197-238, (1987) · Zbl 0622.68052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.