zbMATH — the first resource for mathematics

The parallel Fourier pseudospectral method. (English) Zbl 0709.76105
Summary: Parallel algorithms of the Fourier pseudospectral method are presented for the solution of the unsteady, incompressible Navier-Stokes equations. The only major operation that requires parallelization is the multidimensional FFT. In tests performed on a 1024-node hypercube computer, an efficiency of about 83% is obtained for a three-dimensional problem with mesh size \(128^ 3\). The all-FORTRAN code requires 17s per timestep, rivalling rates obtained from optimized codes on current supercomputers.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
PDF BibTeX Cite
Full Text: DOI
[1] Bonazzola, S.; Marck, J.A., J. comput. phys., (1988)
[2] Brachet, M.E.; Meiron, D.I.; Orszag, S.A.; Nickel, B.G.; More, R.H.; Frisch, U., J. fluid mech., 130, 411, (1983)
[3] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1987), Springer-Verlag Berlin · Zbl 0636.76009
[4] Chamberlain, R.M., Parallel comput., 6, 225, (1988)
[5] CHu, C.Y., Cornell university department of computer science report no. TR-87-850, (1987), (unpublished)
[6] Cooley, J.W.; Lewis, P.A.W.; Welch, P.D., J. sound vib., 12, 315, (1970)
[7] Dombre, T.; Frisch, U.; Green, J.M.; Henon, M.; Mehr, A.; Soward, A.M., J. fluid mech., 167, 353, (1986)
[8] Gordon, C.T.; Stern, W.F., Month. weather rev., 110, 625, (1982)
[9] Gustafson, J.L.; Montry, G.R.; Benner, R.E., SIAM J. sci. stat. comput., 9, 609, (1988)
[10] Hockney, R.W.; Jesshope, C.R., ()
[11] Leorat, J.; Pouquet, A.; Poyet, J.P., (), 287
[12] McBryan, O.A.; van de Velde, E.F., SIAM J. sci. stat. comput., 8, (1986)
[13] Meiron, D.I.; Orszag, S.A.; Shelley, M.J., A numerical study of vortex reconnection, () · Zbl 0781.76028
[14] Melander, M.V., Close interactions of 3D-vortices in incompressible flows, ()
[15] Metcalfe, R.W.; Orszag, S.A.; Brachet, M.E.; Menon, S.; Riley, J.J., J. fluid mech., 184, 207, (1987)
[16] Orszag, S.A., Stud. appl. math., 50, 293, (1971)
[17] Pelz, R.B., Hypercube algorithms for turbulence simulation, (), 462
[18] Rogallo, R.S.; Moin, P., Annu. rev. fluid mech., 16, 99, (1984)
[19] Swarztrauber, P.N., Parallel comput., 5, 197, (1987)
[20] Tadmor, E., SIAM J. numer. anal., 23, 1, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.