×

zbMATH — the first resource for mathematics

A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics. (English) Zbl 0709.76078
Summary: A new finite element method for solving important linear and nonlinear boundary value problems arising in computational physics is described in this paper. The method is designed to handle general three-dimensional regions, boundary conditions, and material properties. The boundaries are described by piecewise planar surfaces on which boundary conditions are imposed. The method uses box finite elements defined by a Cartesian grid that is independent of the boundary definition. Local refinements are performed by dividing a box element into eight similar box elements. The discretization uses trilinear approximations on the box elements with special element stiffness matrices for boxes cut by any boundary surface. This discretization process is automated and does not require the generation of a boundary conforming grid. The resulting (possibly nonlinear) discrete system is solved using a preconditioned GMRES algorithm. The primary preconditioner is a sparse matrix solver using a dynamic drop tolerance in the decomposition phase. Results are presented for aerodynamics problems with up to 400,000 elements, demonstrating the accuracy and efficiency of the method.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
Software:
symrcm
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bank, R.E., (), 1
[2] Bank, R.E., University of California, San Diego, department of mathematics technical report, (1988), (unpublished)
[3] Babuška, I.; Rheinboldt, W.C., (), 345
[4] Szabo, B.A., (), 61
[5] Johnson, F.T., Nasa CR-3079, (1979), (unpublished)
[6] Jameson, A., Princeton university department of mechanical and aerospace engineering report 1651, (1983), (unpublished)
[7] Horst, T.L.; Ballhaus, W.F., Aiaa j., 17, 145, (1979)
[8] Jameson, A.; Schmidt, W.; Turkel, E., AIAA paper 81-1259, (1981), (unpublished)
[9] Jameson, A.; Baker, T.J., AIAA paper 83-1929, (1983), (unpublished)
[10] Jameson, A.; Baker, T.J.; Weatherill, N.P., AIAA paper 86-0103, (1986), (unpublished)
[11] Pelz, R.B.; Jameson, A., AIAA paper 83-1922, (1983), )unpublished)
[12] Löhner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O.C., AIAA paper 85-1531, (1985), (unpublished)
[13] Löhner, R.; Morgan, K.; Zienkiewicz, O.C., (), 281
[14] Glowinski, R., Numerical methods for nonlinear variational problems, (1984), Springer-Verlag New York · Zbl 0575.65123
[15] Wedan, B.; South, J.C., AIAA paper 83-1889, (1983), (unpublished)
[16] {\scT. A. Reyhner}, NASA CR-3814 (unpublished).
[17] LeVeque, R.J., J. comput. phys., 78, 36, (1988)
[18] LeVeque, R.J., (), 375
[19] Johnson, F.T.; James, R.M.; Bussoletti, J.E.; Woo, A.C.; Young, D.P., AIAA paper 82-0953, (1982), (unpublished)
[20] Rubbert, P.E.; Bussoletti, J.E.; Johnson, F.T.; Sidwell, K.W.; Rowe, W.S.; Samant, S.S.; SenGupta, G.; Weatherill, W.H.; Burkhart, R.H.; Everson, B.L.; Young, D.P.; Woo, A.C., (), 49
[21] Buneman, O., J. comput. phys., 8, 500, (1971)
[22] James, R.A., J. comput. phys., 25, 71, (1977)
[23] Hockney, R.W., (), 135
[24] Saad, Y.; Schultz, M.H., SIAM J. sci. stat. comput., 7, 856, (1986)
[25] Wigton, L.B.; Yu, N.J.; Young, D.P., AIAA paper 85-1494, (1985), (unpublished)
[26] Young, D.P.; Melvin, R.G.; Johnson, F.T.; Bussoletti, J.E.; Wigton, L.B.; Samant, S.S., SIAM J. sci. stat. comput., 10, 1186, (1989)
[27] NASA ames research center Contractor’s report, contract NAS2-11851, (1987), (unpublished)
[28] Rubbert, P.E.; Saaris, G.R., AIAA paper 72-188, (1972), (unpublished)
[29] Bateman, H., (), 816
[30] Weiser, A., Yale university department of computer science technical report 213, (1981), (unpublished)
[31] Samant, S.S.; Bussoletti, J.E.; Johnson, F.T.; Melvin, R.G.; Young, D.P., (), 518
[32] Samet, H., Comput. surveys, 16, 68, (1984)
[33] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[34] Hafez, M.; Murman, E.M.; South, J.C., AIAA paper 78-1148, (1978), (unpublished)
[35] Knuth, D.E., ()
[36] George, A.; Liu, J.W.H., Computer solution of large sparse positive definite systems, (1981), Prentice-Hall Englewood Cliffs, NJ
[37] Zienkiewicz, O.C.; Xi-kui, L.; Nakazawa, S., Commun. appl. num. methods, 1, 3, (1985)
[38] Bramble, J.H.; Schatz, A.H., Math. comput., 31, 94, (1977)
[39] Dembo, R.S.; Eisenstat, S.C.; Steihaug, T., SIAM J. num. anal., 19, 400, (1982)
[40] Bank, R.E.; Rose, D.J., Num. math., 37, 279, (1981)
[41] Axelson, O.; Barker, V.A., Finite element solutions of boundary value problems: theory and computation, (1984), Academic Press New York · Zbl 0537.65072
[42] Zlatev, Z.; Wazniewski, J.; Schaumburg, K., SIAM J. sci. stat. comput., 3, 486, (1982)
[43] SenGupta, G., AIAA paper 87-2669, (1987), (unpublished)
[44] Müller, C., Foundations of the mathematical theory of electromagnatic waves, (1969), Springer-Verlag Berlin
[45] Air force flight dynamics laboratory technical report AFFDL-TR-87-3082, (1987), (unpublished)
[46] Samant, S.S.; Bussoletti, J.E.; Johnson, F.T.; Burkhart, R.H.; Everson, B.L.; Melvin, R.G.; Young, D.P.; Erickson, L.L.; Madson, M.D.; Woo, A.C., AIAA paper 87-0034, (1987), (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.