zbMATH — the first resource for mathematics

Particles and ”bumps” in quantum field configurations. (English) Zbl 0709.60560

60-XX Probability theory and stochastic processes
81-XX Quantum theory
Full Text: DOI
[1] E. Carlen, inStochastic Mechanics of Free Scalar Fields, Proceedings of Swansea Conference, I. Davies and A. Truman, eds. (Springer, New York, 1987).
[2] I. Segal,Mathematical Problems in Relativistic Physics (AMS, Providence Rhode Island, 1963). · Zbl 0112.45307
[3] L. Gross, Measurable functions on Hilber space,Trans. Am. Math. Soc. 105:372-390 (1962). · Zbl 0178.50001 · doi:10.1090/S0002-9947-1962-0147606-6
[4] I. Segal, Tensor algebras over Hilbert spaces I,Trans. Am. Math. Soc. 81:106-134 (1956). · Zbl 0070.34003 · doi:10.1090/S0002-9947-1956-0076317-8
[5] J. Cannon, Continuous sample paths in quantum field theory,Commun. Math. Phys. 35:215-234 (1974). · Zbl 0318.60086 · doi:10.1007/BF01646194
[6] T. Newton and E. Wigner, Localized states for elementary systems,Rev. Mod. Phys. 21:400-406 (1949). · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[7] R. Goodman and I. Segal, Anti-locality of certain Lorentz invariant operators,J. Math. Mech. 4:629-638 (1965). · Zbl 0151.44201
[8] E. Stein,Beijing Lectures in Analysis (Princeton University Press, Princeton, New Jersey, 1987).
[9] M. Reed and B. Simon,Methods of Modern Mathematical Physics,III. Scattering Theory, Appendix 1 to XI. 3 (Academic Press, 1979). · Zbl 0405.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.