×

zbMATH — the first resource for mathematics

Persistent homology and Euler integral transforms. (English) Zbl 07089249
Summary: The Euler calculus–an integral calculus based on Euler characteristic as a valuation on constructible functions–is shown to be an incisive tool for answering questions about injectivity and invertibility of recent transforms based on persistent homology for shape characterization.

MSC:
65R10 Numerical methods for integral transforms
58C35 Integration on manifolds; measures on manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Baryshnikov, Y., Ghrist, R., Lipsky, D.: Inversion of Euler integral transforms with applications to sensor data. Inverse Probl. 27(12) (2011) · Zbl 1255.44003
[2] Belton, R., Fasy, B., Mertz, R., Micka, S., Millman, D., Salinas, D., Schenfisch, A., Schupbach, J., Williams, L.: Learning simplicial complexes from persistence diagrams. arXiv:1805.10716 [cs.CG]
[3] Carlsson, G., Topology and data, Bull. Am. Math. Soc., 46, 255-308, (2009) · Zbl 1172.62002
[4] Crawford, L., Monod, A., Chen, A., Mukherjee, S., Rabadan, R.: Functional data analysis using a topological summary statistic: the smooth Euler characteristic transform. arXiv:1611.06818 [stat.AP]
[5] Curry, J., Ghrist, R., Robinson, M.: Euler calculus and its applications to signals and sensing. Proc. Sympos. Appl. Math, AMS (2012) · Zbl 1304.68182
[6] Curry, J., Mukherjee, S., Turner, K.: How many directions determine a shape and other sufficiency results for two topological transforms. arXiv:1805.09782 [math.AT]
[7] Edelsbrunner, H., Harer, J.: Computational topology: an introduction. AMS (2010) · Zbl 1193.55001
[8] Schapira, P., Tomography of constructible functions, 427-435, (1995), Berlin, Heidelberg · Zbl 0878.44002
[9] Turner, K.; Mukherjee, S.; Boyer, D., Persistent homology transforms for modelling shapes and surfaces, Inf. Inference J. IMA, 3, 310-344, (2014) · Zbl 06840289
[10] van den Dries, L.: Tame Topology and O-Minimal Structures, London Mathematical Society Lecture Notes. Cambridge University press, Cambridge (1998) · Zbl 0953.03045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.