×

zbMATH — the first resource for mathematics

The split common fixed point problem for multivalued demicontractive mappings and its applications. (English) Zbl 07086841
Summary: In this article, we consider the split common fixed point problem for two infinite families of multivalued mappings in real Hilbert spaces. We introduce an algorithm based on the viscosity method for solving the split common fixed point problem for two infinite families of multivalued demicontractive mappings. We establish a strong convergence result under some suitable conditions. As applications, we also apply our main result to the split variational inequality problem and the split common null point problem. Finally, we give the numerical example for supporting our main theorem.

MSC:
47H10 Fixed-point theorems
47J25 Iterative procedures involving nonlinear operators
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alsulami, SM; Latif, A.; Takahashi, W., Strong convergence theorems by hybrid methods for split feasibility problems in Hilbert spaces, J. Nonlinear Convex Anal., 16, 2521-2538, (2015) · Zbl 1336.47062
[2] Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18, 441-453, (2002) · Zbl 0996.65048
[3] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20, 103-120, (2004) · Zbl 1051.65067
[4] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011) · Zbl 1218.47001
[5] Byrne, C.; Censor, Y.; Gibali, A.; Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13, 759-775, (2012) · Zbl 1262.47073
[6] Cegielski, A., General method for solving the split common fixed point problem, J. Optim. Theory Appl., 165, 385-404, (2015) · Zbl 1317.47062
[7] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8, 221-239, (1994) · Zbl 0828.65065
[8] Chidume, CE; Ezeora, JN, Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-contractive mappings, Fixed Point Theory Appl., (2014) · Zbl 1345.47035
[9] Chidume, C.E., Bello, A.U., Ndambomve, P.: Strong and \(\Delta \)-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces. Abstr. Appl. Anal., (2014). https://doi.org/10.1155/2014/805168 · Zbl 07023110
[10] Censor, Y.; Segal, A., The split common fixed point problem for directed operators, J. Convex Anal., 16, 587-600, (2009) · Zbl 1189.65111
[11] Censor, Y.; Borteld, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity-modulated radiation therepy, Phys. Med. Biol., 51, 2353-2365, (2006)
[12] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T., The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21, 2071-2084, (2005) · Zbl 1089.65046
[13] Eslamian, M., General algorithms for split common fixed point problem of demicontractive mappings, Optimization, 65, 443-465, (2016) · Zbl 1337.47087
[14] Isiogugu, FO; Osilike, MO, Convergence theorems for new classes of multivalued hemicontractive-type mappings, Fixed Point Theory Appl., 93, 12, (2014) · Zbl 1332.47046
[15] Iiduka, H.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal., 61, 341-350, (2005) · Zbl 1093.47058
[16] Latif, A.; Eslamian, M., Strong convergence and split common fixed point problem for set-valued operators, J. Nonlinear Convex Anal., 17, 967-986, (2016)
[17] Latif, A.; Qin, X., A regularization algorithm for a splitting feasibility problem in Hilbert spaces, J. Nonlinear Sci. Appl., 10, 3856-3862, (2017) · Zbl 1412.47034
[18] Latif, A.; Vahidi, J.; Eslamian, M., Strong convergence for generalized multiple-set split feasibility problem, Filomat, 30, 459-467, (2016) · Zbl 06749701
[19] Maingé, PE, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set Valued Anal., 16, 899-912, (2008) · Zbl 1156.90426
[20] Moudafi, A., The split common fixed-point problem for demicontractive mappings, Inverse Probl., 26, 587-600, (2010) · Zbl 1219.90185
[21] Moudafi, A., A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., 74, 4083-4087, (2011) · Zbl 1232.49017
[22] Moudafi, A., Viscosity-type algorithms for the split common fixed-point problem, Adv. Nonlinear Var. Inequal., 16, 61-68, (2013) · Zbl 1319.47057
[23] Palta, J.R., Mackie, T.R.: Intensity-Modulated Radiation Therapy: The State of The Art. Medical Physics Publishing, Madison (2003)
[24] Qu, B.; Xiu, N., A note on the \(CQ\) algorithm for the split feasibility problem, Inverse Probl., 21, 1655-1665, (2005) · Zbl 1080.65033
[25] Song, Y.; Cho, YJ, Some note on Ishikawa iteration for multi-valued mappings, Bull. Korean Math. Soc., 48, 575-584, (2011) · Zbl 1218.47120
[26] Shehu, Y.; Cholamjiak, P., Another look at the split common fixed point problem for demicontractive operators, Rev. R. Acad. Cien. Exactas Fís. Nat. Ser. A Mat., 110, 201-218, (2016) · Zbl 1338.47105
[27] Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009) · Zbl 1183.46001
[28] Tang, YC; Peng, JG; Liu, LW, A cyclic algorithm for the split common fixed point problem of demicontractive mappings in Hilbert spaces, Math. Model. Anal., 17, 457-466, (2012) · Zbl 1267.47104
[29] Tang, YC; Peng, JG; Liu, LW, A cyclic and simultaneous iterative algorithm for the multiple split common fixed point problem of demicontractive mappings, Bull. Korean Math. Soc., 51, 1527-1538, (2014) · Zbl 1300.47100
[30] Tufa, AR; Zegeye, H.; Thuto, M., Convergence theorems for non-self mappings in CAT(0) Spaces, Numer. Funct. Anal. Optim., 38, 705-722, (2017) · Zbl 1372.37030
[31] Wen, M.; Peng, JG; Tang, YC, A cyclic and simultaneous iterative method for solving the multiple-sets split feasibility problem, J. Optim. Theory Appl., 166, 844-860, (2015) · Zbl 1330.90081
[32] Wang, F.; Xu, HK, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74, 4105-4111, (2011) · Zbl 1308.47079
[33] Xu, HK, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 240-256, (2002) · Zbl 1013.47032
[34] Xu, HK, A variable Krasnosel’skiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22, 2021-2034, (2006) · Zbl 1126.47057
[35] Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26 (2010). https://doi.org/10.1088/0266-5611/26/10/105018/meta · Zbl 1213.65085
[36] Yang, Q., The relaxed \(CQ\) algorithm for solving the split feasibility problem, Inverse Probl., 20, 1261-1266, (2004) · Zbl 1066.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.