×

zbMATH — the first resource for mathematics

Syntax and semantics of superintuitionistic logics. (English. Russian original) Zbl 0708.03011
Algebra Logic 28, No. 4, 262-282 (1989); translation from Algebra Logika 28, No. 4, 402-429 (1989).
The aim of this paper is to study general properties of superintuitionistic logics basing on the introduction of a special kind of canonical formulas. It is shown that any superintuitionistic logic (s.l.) can be axiomatized by means of canonical formulas. At the same time, it is proved that any set of formulas with the above mentioned property can be decreased, that is, the set of all s.l. has no axiomatical basis. By means of the introduced tools of canonical formulas, the author gives a solution of the Dummet-Lemmon hypothesis about the largest modal counterpart. It is proved that the finite model property is preserved under going to the smallest counterpart. New examples of modal counterparts of \({\mathcal I}nt\) without finite model property are given. Properties of s.l. with axioms in restricted languages are considered.
Reviewer: V.V.Rybakov

MSC:
03B55 Intermediate logics
03B45 Modal logic (including the logic of norms)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Ya. Gerchiu and A. V. Kuznetsov, ”On varieties of pseudoboolean algebras defined by an identity of bounded length,” in: The 9th All-Union Algebraic Coll. [in Russian], Gomel (1968), pp. 54–56.
[2] M. V. Zakhar’yashchev, ”Some classes of intermediate logics,” Preprint IPM AN SSSR, No. 160 (1981).
[3] M. V. Zakhar’yashchev, ”On intermediate logics,” Dokl. Akad. Nauk SSSR,269, No. 1, 18–22 (1983).
[4] M. V. Zakhar’yashchev, ”Normal modal logics containing S4,” Dokl. Akad. Nauk SSSR,275, No. 3, 537–540 (1984).
[5] M. V. Zakhar’yashchev, ”Syntax and semantics of modal logics containing S4,” Algebra Logika,27, No. 6, 659–689 (1988). · Zbl 0686.03010
[6] L. L. Maksimova, ”Pretabular superintuitionistic logics,” Algebra Logika,11, No. 5, 558–570 (1972).
[7] L. L. Maksimova, ”Modal logics of finite fibers,” Algebra Logika,14, No. 3, 304–319 (1975).
[8] L. L. Maksimova, ”Interpolation properties of superintuitionistic, positive, and modal logics,” in: Modal and Intensional Logics,” [in Russian], Nauka, Moscow, pp. 81–88. · Zbl 0521.03014
[9] L. L. Maksimova and V. V. Rybakov, ”On the lattice of normal modal logics,” Algebra Logika,13, No. 2, 188–216 (1974).
[10] E. Rasiowa and R. Sikorski, Mathematics of Metamathematics [Russian translation], Nauka, Moscow (1972). · Zbl 0239.02002
[11] V. V. Rybakov, ”Noncompact extensions of the logic S4,” Algebra Logika,16, No. 4, 472–490 (1977). · Zbl 0406.03039
[12] V. B. Shekhtman, ”Topological models of propositional logics,” Semiotics and Informatics,12, 74–98 (1980). · Zbl 0455.03013
[13] L. L. Ésakia, ”On modal counterparts of superintuitionistic logics,” in: the 7th All-Union Symposium on Logics and Methodology of Science [in Russian], Kiev (1976), pp. 135–136.
[14] L. L. Ésakia, ”To the theory of modal and superintuitionistic systems,” in: Logical Inference [in Russian], Nauka, Moscow (1979), pp. 147–172.
[15] V. A. Yankov, ”Conjunctively irreducibile formulas in propositional calculi,” Izv. Akad. Nauk SSSR, Ser. Mat,33, No. 1, 18–38 (1969).
[16] M. A. Dummett, ”A propositional calculus with denumerable matrix,” J. Symb. Logic,24, No. 2, 97–106 (1959). · Zbl 0089.24307 · doi:10.2307/2964753
[17] M. A. Dummett and E. J. Lemmon, ”Modal logics between S4 and S5,” Z. Math. Logik Grundl. Math.,5, 250–264 (1959). · Zbl 0178.30801 · doi:10.1002/malq.19590051405
[18] K. Fine, ”Logics containing K4, Part 1,” J. Symb. Logic,39, No. 1, 31–42 (1974). · Zbl 0287.02010 · doi:10.2307/2272340
[19] K. Fine, ”Logics containing K4, Part 2,” J. Sumb. Logic,50, No. 3, 619–651 (1985). · Zbl 0574.03008 · doi:10.2307/2274318
[20] T. Hosoi, ”On intermediate logics, I”, J. Fac. Sci. Univ. Tokyo, Sec. I,14, 293–312 (1967). · Zbl 0188.31602
[21] C. G. McKay, ”The decidability of certain intermediate logics,” J. Symb. Logic,33, No. 2, 258–264 (1968). · Zbl 0175.27103 · doi:10.2307/2269871
[22] J. C. C. McKinsey and A. Tarski, ”Some theorems about the sentential calculi of Lewis and Heyting,” J. Symb. Logic,13, No. 1, 1–15 (1948). · Zbl 0037.29409 · doi:10.2307/2268135
[23] P. S. Novikov, Constructive Mathematical Logic from Classical Point of View [in Russian], Nauka, Moscow (1977).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.