×

Fractional Navier-Stokes equation from fractional velocity arguments and its implications in fluid flows and microfilaments. (English) Zbl 1476.35305

Summary: A new fractional Navier-Stokes equation is constructed based on the notion of fractional velocity recently introduced in the literature. Its implications in fluid mechanics were discussed. In particular, the Couette and the Poiseuille flows and some insights of fluid flow in microfilaments were addressed accordingly.

MSC:

35R11 Fractional partial differential equations
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. S. Miller and B. Ross, An introduction to the fractional integrals and derivatives-theory and application, Wiley, New York, 1993.; Miller, M. S.; Ross, B., An introduction to the fractional integrals and derivatives-theory and application (1993) · Zbl 0789.26002
[2] I. Podlubny, Fractional differential equations, Academic, New York, 1999.; Podlubny, I., Fractional differential equations (1999) · Zbl 0918.34010
[3] R. Herrmann, Fractional calculus: An introduction for physicists, World Scientific Publishing Company, Singapore, 2011.; Herrmann, R., Fractional calculus: An introduction for physicists (2011) · Zbl 1232.26006
[4] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, River Edge, NJ, USA, 2000.; Hilfer, R., Applications of fractional calculus in physics (2000) · Zbl 0998.26002
[5] X. J. Yang, H. M. Srivastava and C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equation, Rom. Rep. Phys. 67 (2015), 752-761.; Yang, X. J.; Srivastava, H. M.; Cattani, C., Local fractional homotopy perturbation method for solving fractal partial differential equation, Rom. Rep. Phys., 67, 752-761 (2015)
[6] M. Safari, D. D. Ganji and M. Moslemi, M: Application of he’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation, Comput. Math. Appl. 58 (2009), 2091-2097.; Safari, M.; Ganji, D. D.; Moslemi, M., M: Application of he’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation, Comput. Math. Appl., 58, 2091-2097 (2009) · Zbl 1189.65255
[7] Y. F. Zakariya, Y. O. Afolabi, R. I. Nuruddeen and I. O. Sarumi, Analytical solutions to fractional fluid flows and oscillatory process models, Fractal Fract. 2 (18) (2018), 1-12.; Zakariya, Y. F.; Afolabi, Y. O.; Nuruddeen, R. I.; Sarumi, I. O., Analytical solutions to fractional fluid flows and oscillatory process models, Fractal Fract, 2, 18, 1-12 (2018)
[8] F. Gao and X.-J. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Thermal Sci. 20 (2016), S871-S877.; Gao, F.; Yang, X.-J., Fractional Maxwell fluid with fractional derivative without singular kernel, Thermal Sci, 20, S871-S877 (2016)
[9] Y. Bai, Y. Jiang, F. Liu and Y. Zhang, Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation, AIP Adv. 7 (2017), 126309-126314.; Bai, Y.; Jiang, Y.; Liu, F.; Zhang, Y., Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation, AIP Adv, 7, 126309-126314 (2017)
[10] B. H. Yan, L. Yu and Y. H. Yang, Study of oscillating flow in rolling motion with the fractional derivative Maxwell model, Prog. Nucl. Energy. 53 (2011), 132-138.; Yan, B. H.; Yu, L.; Yang, Y. H., Study of oscillating flow in rolling motion with the fractional derivative Maxwell model, Prog. Nucl. Energy, 53, 132-138 (2011)
[11] D. Tripathi, Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy, Comp. Math. Appl. 62 (2011), 1116-1126.; Tripathi, D., Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy, Comp. Math. Appl., 62, 1116-1126 (2011) · Zbl 1228.65204
[12] L. C. Zheng, K. N. Wang and Y. T. Gao, Unsteady flow and heat transfer of a generalized Maxwell fluid due to a hyperbolic sine accelerating plate, Comp. Math. Appl. 61 (2011), 2209-2212.; Zheng, L. C.; Wang, K. N.; Gao, Y. T., Unsteady flow and heat transfer of a generalized Maxwell fluid due to a hyperbolic sine accelerating plate, Comp. Math. Appl., 61, 2209-2212 (2011) · Zbl 1219.76040
[13] M. Athar, A. U. Awan, C. Fetecau and M. Rana, Unsteady flow of a Maxwell fluid with fractional derivatives in a circular cylinder moving with a nonlinear velocity, Quest. Math. 37 (2014), 139-156.; Athar, M.; Awan, A. U.; Fetecau, C.; Rana, M., Unsteady flow of a Maxwell fluid with fractional derivatives in a circular cylinder moving with a nonlinear velocity, Quest. Math., 37, 139-156 (2014) · Zbl 1397.76004
[14] M. Jamil and N. A. Khan, Slip effects in fractional viscoelastic fluids, Int. J. Diff. Equa. Article ID193813. 2011 (2011), 19.; Jamil, M.; Khan, N. A., Slip effects in fractional viscoelastic fluids, Int. J. Diff. Equa, 19 (2011) · Zbl 1402.76017
[15] S. Wang and M. Xu, Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal: Real World Appl. 10 (2009), 1087-1096.; Wang, S.; Xu, M., Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal: Real World Appl, 10, 1087-1096 (2009) · Zbl 1167.76311
[16] A. Heibig and L. I. Palade, On the rest state stability of an objective fractional derivative viscoelastic fluid model, J. Math. Phys. 49 (2008), 043101.; Heibig, A.; Palade, L. I., On the rest state stability of an objective fractional derivative viscoelastic fluid model, J. Math. Phys., 49, 043101 (2008) · Zbl 1152.81468
[17] W. Tan and M. Xu, Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta Mech. Sinica. 18 (2002), 342-349.; Tan, W.; Xu, M., Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta Mech. Sinica, 18, 342-349 (2002)
[18] T. Hayat, S. Zaib, C. Fetecau and C. Fetecau, Flows in a fractional generalized Burgers’ fluid, J. Porous Med. 13 (2010), 725-739.; Hayat, T.; Zaib, S.; Fetecau, C.; Fetecau, C., Flows in a fractional generalized Burgers’ fluid, J. Porous Med., 13, 725-739 (2010) · Zbl 1274.76024
[19] A. J. Nazari, A. F. Nasiry and S. Honma, Effect of fractional flow curves on the recovery of different types of oil in petroleum reservoirs, Proc. Schl. Eng. Tokai Univ., Ser. E41 (2016), 53-58.; Nazari, A. J.; Nasiry, A. F.; Honma, S., Effect of fractional flow curves on the recovery of different types of oil in petroleum reservoirs, Proc. Schl. Eng. Tokai Univ., Ser., E41, 53-58 (2016)
[20] K. Wang and S. Liu, Analytical study of time fractional Navier-Stokes equation by using transform methods, Adv Diff. Equa. 61 (2016) (2016), 1-12.; Wang, K.; Liu, S., Analytical study of time fractional Navier-Stokes equation by using transform methods, Adv Diff. Equa., 61, 2016, 1-12 (2016) · Zbl 1419.35230
[21] N. A. Khan, Analytical study of Navier-Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods, Int. J. Nonlinear Sci. Numer. Simul. 10 (9) (2009), 1127-1134.; Khan, N. A., Analytical study of Navier-Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods, Int. J. Nonlinear Sci. Numer. Simul, 10, 9, 1127-1134 (2009)
[22] Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Comput. Math. Appl. 73 (2017), 874-891.; Zhou, Y.; Peng, L., On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 73, 874-891 (2017) · Zbl 1409.76027
[23] Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Comput. Math. Appl. 73 (2017), 1016-1027.; Zhou, Y.; Peng, L., Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Comput. Math. Appl., 73, 1016-1027 (2017) · Zbl 1412.35233
[24] D. Kumar, J. Singh and S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Ass. Arab. Univ. Basic Appl. Sci. 17 (2015), 14-19.; Kumar, D.; Singh, J.; Kumar, S., A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Ass. Arab. Univ. Basic Appl. Sci., 17, 14-19 (2015)
[25] X. Li, X. Yang and Y. Zhang, Error estimates of mixed finite element methods for time fractional Navier-Stokes equations, J. Sci. Comput. 70 (2017), 500-515.; Li, X.; Yang, X.; Zhang, Y., Error estimates of mixed finite element methods for time fractional Navier-Stokes equations, J. Sci. Comput., 70, 500-515 (2017) · Zbl 1383.65107
[26] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput. 177 (2006), 488-494.; Momani, S.; Odibat, Z., Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177, 488-494 (2006) · Zbl 1096.65131
[27] A. Yildirim, Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Int. J. Numer. Meth. Heat & Fluid Flow. 20 (2010), 186-200.; Yildirim, A., Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Int. J. Numer. Meth. Heat & Fluid Flow, 20, 186-200 (2010) · Zbl 1231.76225
[28] H. Zhang, X. Jiang and X. Yang, A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput. 320 (2018), 302-318.; Zhang, H.; Jiang, X.; Yang, X., A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320, 302-318 (2018) · Zbl 1427.65313
[29] B. Yu, X. Jiang and H. Xu, A novel compact numerical method for solving the two dimensional nonlinear fractional reaction-subdiffusion equation, Numer. Algorithms. 68 (2015), 923-950.; Yu, B.; Jiang, X.; Xu, H., A novel compact numerical method for solving the two dimensional nonlinear fractional reaction-subdiffusion equation, Numer. Algorithms, 68, 923-950 (2015) · Zbl 1314.65114
[30] A. Karcı, A new approach for fractional order derivative and its applications, Univ. J. Eng. Sci. 1 (2013), 110-117.; Karcı, A., A new approach for fractional order derivative and its applications, Univ. J. Eng. Sci., 1, 110-117 (2013) · Zbl 1359.26008
[31] A. Karcı, The physical and geometrical interpretation of fractional order derivatives, Univ. J. Eng. Sci. 3 (2015), 53-63.; Karcı, A., The physical and geometrical interpretation of fractional order derivatives, Univ. J. Eng. Sci., 3, 53-63 (2015)
[32] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Diff. Appl. 1 (2015), 73-85.; Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Frac. Diff. Appl, 1, 73-85 (2015) · Zbl 1349.74030
[33] J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular Kernel, Prog. Frac. Diff. Appl. 1 (2015), 87-92.; Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular Kernel, Prog. Frac. Diff. Appl, 1, 87-92 (2015)
[34] A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comp. 273 (2016), 948-956.; Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comp., 273, 948-956 (2016) · Zbl 1410.35272
[35] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (2014), 1-15.; Katugampola, U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6, 1-15 (2014) · Zbl 1317.26008
[36] A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci. 20 (2016), 757-763.; Atangana, A.; Baleanu, D., New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20, 757-763 (2016)
[37] D. Prodanov, Regularization of derivatives on non-differentiable points, J, Phys.: Conf. Ser. 701 (2016), 012031.; Prodanov, D., Regularization of derivatives on non-differentiable points, J, Phys.: Conf. Ser., 701, 012031 (2016) · Zbl 1372.26005
[38] D. Prodanov, Some applications of fractional velocities, Fract. Calc. Appl. Anal. 19 (2016), 173-187.; Prodanov, D., Some applications of fractional velocities, Fract. Calc. Appl. Anal, 19, 173-187 (2016) · Zbl 1381.26005
[39] D. Prodanov, Conditions for continuity of fractional velocity and existence of fractional Taylor expansions, Chaos Solitons Fractals. 102 (2017), 236-244.; Prodanov, D., Conditions for continuity of fractional velocity and existence of fractional Taylor expansions, Chaos Solitons Fractals, 102, 236-244 (2017) · Zbl 1374.26005
[40] D. Prodanov, Fractional velocity as a tool for the study of non-linear problems, Fractals Fract. 2 (2018), 1-23.; Prodanov, D., Fractional velocity as a tool for the study of non-linear problems, Fractals Fract, 2, 1-23 (2018)
[41] D. Prodanov, On the conditions for existence and continuity of fractional velocity, Chaos Solitons Fractals. 102 (2017), 236-244.; Prodanov, D., On the conditions for existence and continuity of fractional velocity, Chaos Solitons Fractals, 102, 236-244 (2017) · Zbl 1374.26005
[42] A. S. Balankin, The concept of multifractal elasticity, Phys. Lett. A210 (1996), 51-59.; Balankin, A. S., The concept of multifractal elasticity, Phys. Lett., A210, 51-59 (1996) · Zbl 1064.74509
[43] A. S. Balankin and B. E. Elizarraraz, Map of fluid flow in fractal porous medium into fractal continuum flow, Phys. Rev. E85 (2012), 056314.; Balankin, A. S.; Elizarraraz, B. E., Map of fluid flow in fractal porous medium into fractal continuum flow, Phys. Rev., E85, 056314 (2012)
[44] A. S. Balankin and B. Espinoza, Hydrodynamics of fractal continuum flow, Phys. Rev. E. 85 (2012), 025302(R.; Balankin, A. S.; Espinoza, B., Hydrodynamics of fractal continuum flow, Phys. Rev. E, 85, 025302 (2012)
[45] A. S. Balankin, Steady laminar flow of fractal fluids, Phys. Lett. A381 (2017), 623-628.; Balankin, A. S., Steady laminar flow of fractal fluids, Phys. Lett., A381, 623-628 (2017) · Zbl 1372.76006
[46] A. K. Golmankhaneh and D. Baleanu, Diffraction from fractal grating Cantor sets, J. Mod. Optic. 63 (2016), 1364-1369.; Golmankhaneh, A. K.; Baleanu, D., Diffraction from fractal grating Cantor sets, J. Mod. Optic., 63, 1364-1369 (2016) · Zbl 1473.28009
[47] A. K. Golmankhaneh and D. Baleanu, About Schrödinger equation on fractals curves imbedding in, Int. J. Theor. Phys. 54 (2015), 1275-1282.; Golmankhaneh, A. K.; Baleanu, D., About Schrödinger equation on fractals curves imbedding in, Int. J. Theor. Phys., 54, 1275-1282 (2015) · Zbl 1328.81119
[48] A. K. Golmankhaneh and D. Baleanu, Fractal calculus involving Gauge function, Commun. Nonlinear Sci. 37 (2016), 125-130.; Golmankhaneh, A. K.; Baleanu, D., Fractal calculus involving Gauge function, Commun. Nonlinear Sci., 37, 125-130 (2016) · Zbl 1473.28009
[49] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Phys. 14 (2016), 542-548.; Golmankhaneh, A. K.; Baleanu, D., Non-local integrals and derivatives on fractal sets with applications, Open Phys, 14, 542-548 (2016) · Zbl 1473.28009
[50] A. K. Golmankhaneh and C. Tunc, On the Lipschitz condition in the fractal calculus, Chaos Solitons Fractals. 95 (2017), 140-147.; Golmankhaneh, A. K.; Tunc, C., On the Lipschitz condition in the fractal calculus, Chaos Solitons Fractals, 95, 140-147 (2017) · Zbl 1373.34009
[51] Q. A. Naqvi and M. Zubair, On cylindrical model of electrostatic potential in fractional dimensional space, Optik: Int. J. Light Electron Opt, USSR, 127 (2016), 3243-3247.; Naqvi, Q. A.; Zubair, M., On cylindrical model of electrostatic potential in fractional dimensional space, Optik: Int. J. Light Electron Opt, USSR,, 127, 3243-3247 (2016)
[52] M. Zubair, M. J. Mughal and Q. A. Naqvi, The wave equation and general plane wave solutions in fractional space, Prog. Electromagnet. Res. Lett. 19 (2010), 137-146.; Zubair, M.; Mughal, M. J.; Naqvi, Q. A., The wave equation and general plane wave solutions in fractional space, Prog. Electromagnet. Res. Lett., 19, 137-146 (2010) · Zbl 1221.78022
[53] A. Karci and A. Karadoğan, Fractional order derivative and relationship between derivative and complex functions, IECMSA-2013: 2nd International Eurasian Conference on Mathematical Sciences and Applications, Sarajevo, Bosnia and Herzogovina, 2013.; Karci, A.; Karadoğan, A., Fractional order derivative and relationship between derivative and complex functions (2013) · Zbl 1391.26024
[54] A. Karci and A. Karadoğan, Fractional order derivative and relationship between derivative and complex functions, Math. Sci. Appl. E-Notes. 2 (2014), 44-54.; Karci, A.; Karadoğan, A., Fractional order derivative and relationship between derivative and complex functions, Math. Sci. Appl. E-Notes, 2, 44-54 (2014) · Zbl 1391.26024
[55] L. D. Landau and E. M. Lifshitz, Fluid mechanics, course of theoretical physics, 2nd, Pergamon Press, 1987.; Landau, L. D.; Lifshitz, E. M., Fluid mechanics, course of theoretical physics (1987)
[56] T. D. Placek and F. R. Notes, Lectures given at the chemical engineering department, Auburn University, Alabama, 2013.; Placek, T. D.; Notes, F. R., Lectures given at the chemical engineering department (2013)
[57] M. Zubair, M. J. Mughal and Q. A. Naqvi, On electromagnetic wave propagation in fractional space, Nonlinear Anal: Real World Appl. 12 (2011), 2844-2850.; Zubair, M.; Mughal, M. J.; Naqvi, Q. A., On electromagnetic wave propagation in fractional space, Nonlinear Anal: Real World Appl, 12, 2844-2850 (2011) · Zbl 1221.78022
[58] M. Zubair, M. J. Mughal and Q. A. Naqvi, An exact solution of spherical wave in D-dimensional fractional space, J. Electrom. Waves Appl. 25 (2011), 1481-1491.; Zubair, M.; Mughal, M. J.; Naqvi, Q. A., An exact solution of spherical wave in D-dimensional fractional space, J. Electrom. Waves Appl, 25, 1481-1491 (2011) · Zbl 1221.78022
[59] M. Zubair, M. J. Mughal and Q. A. Naqvi, Electromagnetic wave propagation in fractional space, in: Electromagnetic fields and waves in fractional dimensional space, springer briefs in applied sciences and technology, Springer, Berlin, Heidelberg, 2012.; Zubair, M.; Mughal, M. J.; Naqvi, Q. A., Electromagnetic fields and waves in fractional dimensional space, springer briefs in applied sciences and technology (2012) · Zbl 1244.78001
[60] F. H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. Math. Phys. 18 (1977), 1224-1234.; Stillinger, F. H., Axiomatic basis for spaces with noninteger dimension, J. Math. Phys, 18, 1224-1234 (1977) · Zbl 0359.54023
[61] R. D. Vale, The molecular motor toolbox for intracellular transport, Cell. 112 (2003), 467-480.; Vale, R. D., The molecular motor toolbox for intracellular transport, Cell, 112, 467-480 (2003)
[62] I. M. Cheeseman and A. Desai, Molecular architecture of the kinetochore-microtubule interface, Nature Rev. Mol. Cell Biol. 9 (2008), 33-46.; Cheeseman, I. M.; Desai, A., Molecular architecture of the kinetochore-microtubule interface, Nature Rev. Mol. Cell Biol., 9, 33-46 (2008)
[63] I. M. Kulic, A. E. X. Brown, H. Kim, C. Kural, B. Blehm, P. R. Selvin, P. C. Nelson and V. I. Gelfand, The role of microtubule movement in bidirectional organelle transport, Pnas. 105 (2008), 10011-10016.; Kulic, I. M.; Brown, A. E. X.; Kim, H.; Kural, C.; Blehm, B.; Selvin, P. R.; Nelson, P. C.; Gelfand, V. I., The role of microtubule movement in bidirectional organelle transport, Pnas, 105, 10011-10016 (2008)
[64] C. Cai, Q. Sun and I. D. Boyd, Gas flows in microchannels and microtubes, J. Fluid Mech. 589 (2007), 305-315.; Cai, C.; Sun, Q.; Boyd, I. D., Gas flows in microchannels and microtubes, J. Fluid Mech., 589, 305-315 (2007) · Zbl 1141.76446
[65] K. C. Pong, C. M. Ho and J. Q. Liu, Nonlinear pressure distribution in uniform microchannels. In Application of Microfabrication to Fluid Mechanics, ASME Winter Annual Meeting. Chicago. pp. 51-56, 1994.; Pong, K. C.; Ho, C. M.; Liu, J. Q., Nonlinear pressure distribution in uniform microchannels, 51-56 (1994)
[66] L. Brandt, Fluid mechanics, lectures given at department of mechanics, Royal Institute of Technology (KTH) SE-100 44, Stockholm Sweden, (2015).; Brandt, L., Fluid mechanics, lectures given at department of mechanics (2015)
[67] J. A. K. Suykens, Extending Newton’s law from nonlocal-in-time kinetic energy, Phys. Lett. A373 (2009), 1201-1211.; Suykens, J. A. K., Extending Newton’s law from nonlocal-in-time kinetic energy, Phys. Lett., A373, 1201-1211 (2009) · Zbl 1228.70004
[68] Z.-Y. Li, J.-L. Fu and L.-Q. Chen, Euler-Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system, Phys. Lett. A374 (2009), 106-109.; Li, Z.-Y.; Fu, J.-L.; Chen, L.-Q., Euler-Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system, Phys. Lett., A374, 106-109 (2009) · Zbl 1235.70035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.