×

Discrete-time trawl processes. (English) Zbl 1488.60243

Summary: We introduce a class of discrete time stationary trawl processes taking real or integer values and written as sums of past values of independent ’seed’ processes on shrinking intervals (‘trawl heights’). Related trawl processes in continuous time were studied in Barndorff-Nielsen et al. (2011, 2014).
In the case when the trawl function decays as a power function of the lag with exponent \(1 < \alpha < 2\), the trawl process exhibits long memory and its covariance function is non-summable. We show that under general conditions on generic seed process, the normalized partial sums of such trawl process may tend either to a fractional Brownian motion or to an \(\alpha\)-stable Lévy process. Moreover if the trawl function admits a faster decay rate, then the classical Donsker’s invariance principle holds true.

MSC:

60K99 Special processes
60G22 Fractional processes, including fractional Brownian motion
60G52 Stable stochastic processes
60F17 Functional limit theorems; invariance principles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balan, R.; Jakubowski, A.; Louhichi, S., Functional convergence of linear processes with heavy-tailed innovations, J. Theoret. Probab., 29, 491-526 (2016) · Zbl 1346.60037
[2] O.E. Barndorff-Nielsen, F.E. Benth, A.E.D. Veraart, Recent advances in ambit stochastics. Preprint Available at arXiv.org:1210.1354; O.E. Barndorff-Nielsen, F.E. Benth, A.E.D. Veraart, Recent advances in ambit stochastics. Preprint Available at arXiv.org:1210.1354 · Zbl 1312.60063
[3] Barndorff-Nielsen, O. E.; Lunde, A.; Shepard, N.; Veraart, A. E.D., Integer-valued trawl processes: a class of stationary infinitely divisible processes, Scand. J. Stat., 41, 693-724 (2014) · Zbl 1309.60033
[4] Billingsley, P., Convergence of Probability Measures (1999), Wiley: Wiley New-York · Zbl 0172.21201
[5] Christou, V.; Fokianos, K., Quasi-likelihood inference for negative binomial time series, J. Time Ser. Anal., 35, 55-78 (2014) · Zbl 1301.62084
[6] Cont, R.; Tankov, P., Financial Modellling with Jump Processes (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton
[7] Dehling, H.; Philipp, W., Empirical process techniques for dependent data, (Dehling, H.; Mikosch, T.; Sørensen, M., Empirical Process Techniques for Dependent Data (2002), Birkhäuser: Birkhäuser Boston), 1-113 · Zbl 1021.62036
[8] Doukhan, P.; Lang, G.; Surgailis, D.; Viano, M.-C., Functional limit theorem for the empirical process of a class of Bernoulli shifts with long memory, J. Theoret. Probab., 18, 109-134 (2005)
[9] Dudley, R., An extended wichura theorem, definitions of donsker class, and weighted empirical distributions, (Beck, A.; Dudley, R.; Hahn, M.; Kuelbs, J.; Marcus, M., Probability in Banach Spaces V. Probability in Banach Spaces V, Lecture Notes in Mathematics, vol. 1153 (1985), Springer: Springer Boston), 141-178 · Zbl 0587.60008
[10] Esary, J. D.; Proschan, F.; Walkup, D. W., Association of random variables, with applications, Ann. Math. Stat., 38, 1466-1474 (1967) · Zbl 0183.21502
[11] Giraitis, L.; Koul, H. L.; Surgailis, D., Large Sample Inference for Long Memory Processes (2012), Imperial College Press: Imperial College Press London · Zbl 1279.62016
[12] Hall, P.; Heyde, C. C., Martingale Limit Theory and its Application (1980), Academic Press: Academic Press New York · Zbl 0462.60045
[13] Ho, H.-C.; Hsing, T., On the asymptotic expansion of the empirical process of long memory moving averages, Ann. Statist., 24, 992-1024 (1996) · Zbl 0862.60026
[14] Ibragimov, I. A.; Linnik, Y. V., Independent and Stationary Sequences of Random Variables (1971), Wolters-Noordhoff: Wolters-Noordhoff Groningen · Zbl 0219.60027
[15] Jakubowski, A., A non-Skorohod topology on the Skorohod space, Electron. J. Probab., 2-4, 1-21 (1997)
[16] Kaj, I.; Taqqu, M. S., Convergence to fractional Brownian motion and to the telecom process: the integral representation approach, (Vares, M. E.; Sidoravicius, V., An Out of Equilibrium 2. An Out of Equilibrium 2, Progress in Probability, vol. 60 (2008), Birkhäuser: Birkhäuser Basel), 383-427 · Zbl 1154.60020
[17] Konstantopoulos, T.; Lin, S.-J., Macroscopic models for long-range dependent network traffic, Queueing Syst., 28, 215-243 (1998) · Zbl 0908.90131
[18] Kwapień, S.; Woyczyński, W. A., Random Series and Stochastic Integrals: Single and Multiple (1992), Birkhäuser: Birkhäuser Boston · Zbl 0751.60035
[19] Lambert, D., Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14 (1992) · Zbl 0850.62756
[20] Leipus, R.; Paulauskas, V.; Surgailis, D., Renewal regime switching and stable limit laws, J. Econometrics, 129, 299-327 (2005) · Zbl 1337.62195
[21] Leipus, R.; Surgailis, D., Random coefficient autoregression, regime switching and long memory, Adv. Appl. Probab., 35, 737-754 (2003) · Zbl 1044.62095
[22] Lifshits, M., Random Processes by Example (2014), World Scientific: World Scientific New Jersey · Zbl 1305.60002
[23] Louhichi, S., Weak convergence for empirical processes of associated sequences, Ann. I. H. P. Ser B, 36, 547-567 (2000) · Zbl 0968.60019
[24] Louhichi, S.; Rio, E., Functional convergence to stable Lévy motions for iterated random Lipschitz mappings, Electron. J. Probab., 16, 2452-2480 (2011) · Zbl 1245.60041
[25] Lyapunov, A. M., Sur un théorème du calcul des probabilités, C. R. Hebd. Seances Acad. Sci., 132, 126-128 (1901) · JFM 32.0230.01
[26] Mikosch, T.; Resnick, S.; Rootzén, H.; Stegeman, A., Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab., 12, 23-68 (2002) · Zbl 1021.60076
[27] Pilipauskaitė, V.; Surgailis, D., Joint temporal and contemporaneous aggregation of random-coefficient AR(1)-processes, Stochastic Process. Appl., 124, 1011-1035 (2014) · Zbl 1400.62194
[28] Pipiras, V.; Taqqu, M. S.; Levy, B., Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed, Bernoulli, 10, 121-163 (2004) · Zbl 1043.60040
[29] Resnick, S.; Van den Berg, E., Weak convergence of high-speed traffic models, J. Appl. Probab., 37, 1375-1397 (2000)
[30] Roueff, F.; Samorodnitsky, G.; Soulier, P., Function-indexed empirical processes based on an infinite source Poisson transmission stream, Bernoulli, 18, 783-802 (2012) · Zbl 1259.60036
[31] Skorohod, A. V., Limit theorems for stochastic processes, Theory Probab. Appl., 1, 261-290 (1956)
[32] Surgailis, D., Stable limits of sums of bounded functions of long memory moving averages with finite variance, Bernoulli, 10, 327-355 (2004) · Zbl 1076.62017
[33] Taqqu, M. S.; Willinger, W.; Sherman, R., Proof of the fundamental result in self-similar traffic modeling, Comput. Commun. Rev., 27, 5-23 (1997)
[34] Whitt, W., Stochastic-Process Limits. An introduction to Stochastic-Process Limits and their Application to Queues (2002), Springer: Springer New York · Zbl 0993.60001
[35] Willinger, W.; Paxon, V.; Riedi, R. H.; Taqqu, M. S., Long-range dependence and data network traffic, (Doukhan, P.; Oppenheim, G.; Taqqu, M. S., Theory and Applications of Long-Range Dependence (2003), Birkhäuser: Birkhäuser Boston), 373-407 · Zbl 1109.60317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.