zbMATH — the first resource for mathematics

Coarse geometry and topological phases. (English) Zbl 07041901
Summary: We propose the Roe \({{\mathrm C}^*}\)-algebra from coarse geometry as a model for topological phases of disordered materials. We explain the robustness of this \({{\mathrm C}^*}\)-algebra and formulate the bulk-edge correspondence in this framework. We describe the map from the K-theory of the group \({{\mathrm C}^*}\)-algebra of \({\mathbb {Z}^d}\) to the K-theory of the Roe \({{\mathrm C}^*}\)-algebra, both for real and complex K-theory.

47B Special classes of linear operators
47A General theory of linear operators
47N Miscellaneous applications of operator theory
60H Stochastic analysis
82B Equilibrium statistical mechanics
Full Text: DOI
[1] Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys., 157(2), 245-278 (1993). http://projecteuclid.org/euclid.cmp/1104253939 · Zbl 0782.60044
[2] Bellissard, J.: \(K\)-theory of \({C^*}\)-algebras in solid state physics. Statistical mechanics and field theory: mathematical aspects (Groningen, 1985). Lecture notes in physics, vol. 257, Springer, Berlin, pp. 99-156 (1986). https://doi.org/10.1007/3-540-16777-3_74
[3] Bellissard, Jean V., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35(10), 5373-5451 (1994). https://doi.org/10.1063/1.530758 · Zbl 0824.46086
[4] Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hull of aperiodic solids and gap labeling theorems. Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, American Mathematical Society, Providence, RI, pp. 207-258 (2000) · Zbl 0972.52014
[5] Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C., Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, 314, 1757-1761, (2006)
[6] Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \({C^*}\)-algebras, J. Oper. Theory, 26(2), 255-282 (1991). http://www.theta.ro/jot/archive/1991-026-002/1991-026-002-003.html · Zbl 0813.46036
[7] Bost, J.-B., Principe d’Oka, \(K\)-théorie et systèmes dynamiques non commutatifs, Invent. Math., 101, 261-333, (1990) · Zbl 0719.46038
[8] Brodzki, J.; Cave, C.; Li, K., Exactness of locally compact groups, Adv. Math., 312, 209-233, (2017) · Zbl 1387.22009
[9] Chen, X.; Tessera, R.; Wang, X.; Yu, G., Metric sparsification and operator norm localization, Adv. Math., 218, 1496-1511, (2008) · Zbl 1148.46040
[10] Cuntz, J., Meyer, R., Rosenberg, J.M.: Topological and bivariant \(K\)-theory, Oberwolfach Semi nars. Birkhäuser Verlag, Basel (2007). https://doi.org/10.1007/978-3-7643-8399-2 · Zbl 1139.19001
[11] Fu, L.; Kane, C. L.; Mele, E. J., Topological insulators in three dimensions, Phys. Rev. Lett., 98, 106803, (2007)
[12] Higson, N., Roe, J.: Analytic \(K\)-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford (2000).
[13] Higson, N.; Roe, J.; Yu, G., A coarse Mayer-Vietoris principle, Math. Proc. Camb. Philos. Soc., 114, 85-97, (1993) · Zbl 0792.55001
[14] Kasparov, G.G.: The operator \(K\)-functor and extensions of \({C^*}\)-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44(3), 571-636, 719.http://mi.mathnet.ru/izv1739; English transl., Math. USSR-Izv., 16(3), 513-572 (1981).
[15] Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91, 147-201, (1988) · Zbl 0647.46053
[16] Kellendonk, J., On the \({C^*}\)-algebraic approach to topological phases for insulators, Ann. Henri Poincaré, 18, 2251-2300, (2017) · Zbl 1382.82045
[17] Kennedy, R.; Zirnbauer, M. R., Bott periodicity for \({\mathbb{Z}_2}\) symmetric ground states of gapped free-fermion systems, Commun. Math. Phys., 342, 909-963, (2016) · Zbl 1346.81159
[18] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conference Proceedings, 1134, 22-30, (2009) · Zbl 1180.82221
[19] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., 349, 493-525, (2017) · Zbl 1357.82013
[20] Liu, C.-X.; Qi, X.-L.; Zhang, H.; Dai, X.; Fang, Z.; Zhang, S.-C., Model Hamiltonian for topological insulators, Phys. Rev. B, 82, 045122-045140, (2010)
[21] Meyer, R.: Local and analytic cyclic homology, EMS Tracts in Mathematics, vol. 3, European Mathematical Society (EMS), Zürich (2007). https://doi.org/10.4171/039 · Zbl 1134.46001
[22] De Nittis, G.; Gomi, K., Classification of “Real” Bloch-bundles: topological quantum systems of type \({\mathbf{AI}}\), J. Geom. Phys., 86, 303-338, (2014) · Zbl 1316.57019
[23] De Nittis, G.; Gomi, K., Classification of “quaternionic” Bloch-bundles: topological quantum systems of type AII, Commun. Math. Phys., 339, 1-55, (2015) · Zbl 1326.57047
[24] Phillips, N. C., \(K\)-theory for Fréchet algebras, Int. J. Math., 2, 77-129, (1991) · Zbl 0744.46065
[25] Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators, From \(K\)-theory to Physics. Mathematical Physics Studies, Springer (2016). https://doi.org/10.1007/978-3-319-29351-6 · Zbl 1342.82002
[26] Ringel, Z.; Kraus Yaacov, E.; Stern, A., Strong side of weak topological insulators, Physical Review B, 86, 045102, (2012)
[27] Roe, J.: An index theorem on open manifolds. I, J. Differ. Geom. 27(1), 87-113 (1988). http://projecteuclid.org/euclid.jdg/1214441652 · Zbl 0657.58041
[28] Roe, J.: An index theorem on open manifolds. II, J. Differ. Geom. 27(1), 115-136 (1988). http://projecteuclid.org/euclid.jdg/1214441653 · Zbl 0657.58041
[29] Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31, American Mathematical Society, Providence, RI (2003). https://doi.org/10.1090/ulect/031 · Zbl 1042.53027
[30] Roe, J., Warped cones and property A, Geom. Topol., 9, 163-178, (2005) · Zbl 1082.53036
[31] Sako, H., Property A and the operator norm localization property for discrete metric spaces, J. Reine Angew. Math., 690, 207-216, (2014) · Zbl 1295.46017
[32] Špakula, J.: K-theory of Uniform Roe Algebras, Ph.D. Thesis, Vanderbilt University (2008). http://etd.library.vanderbilt.edu/available/etd-07102008-220512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.