×

zbMATH — the first resource for mathematics

Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb {R}^d\). (English) Zbl 07030876

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
82B43 Percolation
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aizenman, M.; Barsky, DJ, Sharpness of the phase transition in percolation models, Commun. Math. Phys., 108, 489-526, (1987) · Zbl 0618.60098
[2] Aizenman, M.; Barsky, DJ; Fernández, R., The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys., 47, 343-374, (1987)
[3] Ahlberg, D.; Griffiths, S.; Morris, R.; Tassion, V., Quenched Voronoi percolation, Adv. Math., 286, 889-911, (2016) · Zbl 1335.60178
[4] Beffara, V.; Duminil-Copin, H., The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\), Probab. Theory Relat. Fields, 153, 511-542, (2012) · Zbl 1257.82014
[5] Broadbent, SR; Hammersley, JM, Percolation processes. I. Crystals and mazes, Proc. Camb. Philos. Soc., 53, 629-641, (1957) · Zbl 0091.13901
[6] Bollobás, B.; Riordan, O., The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, 136, 417-468, (2006) · Zbl 1100.60054
[7] Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006) · Zbl 1118.60001
[8] Benjamini, I.; Schramm, O., Conformal invariance of Voronoi percolation, Commun. Math. Phys., 197, 75-107, (1998) · Zbl 0921.60081
[9] Duminil-Copin, H., Raoufi, A., Tassion, V.: A new computation of the critical point for the planar random-cluster model with \(q\ge 1\). Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 54. No. 1. Institut Henri Poincaré (2018) · Zbl 1395.82043
[10] Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharpness of the phase transition for random-cluster and Potts models via decision trees. arXiv:1705.03104 (2017) · Zbl 07003145
[11] Duminil-Copin, H., Raoufi, A., Tassion, V.: Subcritical phase of \(d\)-dimensional Poisson-boolean percolation and its vacant set (in preparation) (2017) · Zbl 07003145
[12] Duminil-Copin, H.; Tassion, V., A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Commun. Math. Phys., 343, 725-745, (2016) · Zbl 1342.82026
[13] Friedgut, E.; Kalai, G., Every monotone graph property has a sharp threshold, Proc. Am. Math. Soc., 124, 2993-3002, (1996) · Zbl 0864.05078
[14] Menshikov, MV, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, 288, 1308-1311, (1986)
[15] Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, New York (2008) · Zbl 0858.60092
[16] O’Donnell, R., Saks, M., Schramm, O., Servedio, R.: Every decision tree has an influential variable. In: FOCS (2005)
[17] Tassion, V., Crossing probabilities for Voronoi percolation, Ann. Probab., 44, 3385-3398, (2016) · Zbl 1352.60130
[18] Zvavitch, A.: The critical probability for Voronoi percolation. Master thesis (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.