×

zbMATH — the first resource for mathematics

A principle of uncertainty and information invariance. (English) Zbl 0703.94026
Summary: The paper introduces a new principle, referred to as the principle of uncertainty and information invariance, for making transformations between different mathematical theories by which situations under uncertainty can be characterized. This principle requires that the amount of uncertainty (and related information) be preserved under these transformations. The principle is developed in sufficient details for transformations between probability theory and possibility theory under interval, log-interval and ordinal scales. Its broader use is discussed only in general terms and illustrated by an example.

MSC:
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0020-0255(85)90040-4 · Zbl 0566.68069
[2] DOI: 10.1016/0020-7373(89)90004-7
[3] DOI: 10.1080/03081078508934916
[4] DOI: 10.1016/0165-0114(86)90024-2 · Zbl 0617.94017
[5] Cohen L. J., The Implications of Induction (1970)
[6] DOI: 10.1016/0165-0114(87)90132-1 · Zbl 0618.60003
[7] Dubois D., Fuzzy Information and Decision Processes pp 167– (1982)
[8] DOI: 10.1016/S0165-0114(83)80099-2 · Zbl 0515.60005
[9] DOI: 10.1016/0005-1098(85)90004-4 · Zbl 0596.62007
[10] DOI: 10.1080/03081078608934937
[11] DOI: 10.1016/0377-2217(86)90266-3 · Zbl 0588.62002
[12] Dubois D., Possibility Theory (1988)
[13] DOI: 10.1016/0377-2217(89)90326-3 · Zbl 0663.90050
[14] DOI: 10.1016/0022-247X(67)90189-8 · Zbl 0145.24404
[15] Hacking I., The Emergence of Probability (1975) · Zbl 0311.01004
[16] Hartley R. V. L., The Bell System Technical J. 7 pp 535– (1928)
[17] DOI: 10.1109/21.21598
[18] DOI: 10.1080/03081078208547446 · Zbl 0484.94047
[19] DOI: 10.1080/03081078208960799 · Zbl 0497.94008
[20] Jaynes E. T., Papers on Probability, Statistics and Statistical Physics (1983) · Zbl 0501.01026
[21] Kandel A., Advances in Fuzzy Set Theory and Applications pp 181– (1979)
[22] Kapur J. N., J. Math. Phys. Sciences 17 pp 103– (1983)
[23] DOI: 10.1016/0165-0114(87)90087-X · Zbl 0633.94026
[24] Klir G. J., Proc. Third IFSA Congress pp 408– (1989)
[25] Klir G. J., Fuzzy Sets, Uncertainty, and Information (1988) · Zbl 0675.94025
[26] DOI: 10.1016/0165-0114(87)90090-X · Zbl 0632.94039
[27] DOI: 10.1080/03081078608934940
[28] Krantz D. H., Foundations of Measurement; Vol I Additive and Polynomial Representations (1971) · Zbl 0232.02040
[29] DOI: 10.1080/03081078808935019 · Zbl 1200.94040
[30] DOI: 10.1002/int.4550020302 · Zbl 0641.68152
[31] DOI: 10.1016/0165-0114(87)90089-3 · Zbl 0638.94027
[32] A. Rényi ,Probability Theory. North-Holland , Amsterdam , 1970 ( Chapter IX, Introduction to Information Theory , pp. 540 – 616 ).
[33] Shackle G. L. S., Decision, Order and Time in Human Affairs (1961)
[34] Shackle G. L. S., Imagination and the Nature of Choice (1979)
[35] Shafer G., A Mathematical Theory of Evidence (1976) · Zbl 0326.62009
[36] Shannon C. E., The Belt System Technical J. 27 pp 379– (1948)
[37] Smets P., Non-Standard Logics for Automated Reasoning pp 253– (1988)
[38] Stephanou H. E., IEEE Trans. on Systems, Man, and Cybernetics 17 pp 780– (1987)
[39] Sugeno M., Fuzzy Automata and Decision Processes pp 89– (1977)
[40] DOI: 10.1016/S0020-7373(89)80032-X · Zbl 0684.68105
[41] Williams P. M., J. of the Royal Statistical Society 44 pp 341– (1982)
[42] DOI: 10.1080/03081077908547452 · Zbl 0429.04007
[43] DOI: 10.1080/03081078308960825 · Zbl 0521.94008
[44] DOI: 10.1002/int.4550010106 · Zbl 0641.68154
[45] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
[46] DOI: 10.1016/0165-0114(78)90029-5 · Zbl 0377.04002
[47] Zadeh L. A., Mathematical Frontiers of the Social and Policv Sciences pp 69– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.