zbMATH — the first resource for mathematics

p-adic string compactified on a torus. (English) Zbl 0703.22010
This is one of many recent papers devoted to study the non-archimedean string theory. The \([U(1)]^ D\) model with the Villain form of action on a g-loop generalization of the Bruhat-Tits tree for the p-adic linear group \(GL(2,{\mathbb{Q}}_ p)\) is considered. The statistical sum and all correlation functions are calculated. The amplitude for the emission of N particles from the boundary of the Bruhat-Tits generalized tree is presented. The method of calculating consists in considering first the finite connected subgraph, determining the statistical sum and correlators for this graph and taking the limit.
Reviewer: P.Maślanka

22E35 Analysis on \(p\)-adic Lie groups
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81S20 Stochastic quantization
Full Text: DOI
[1] Volovich, I.V.:p-adic string. Class. Quant. Gravity4, L83-L87 (1987) · Zbl 0636.12015
[2] Grossman, B.:p-Adic strings, the Weyl conjectures and anomalies. Phys. Lett.197B, 101–104 (1987). · Zbl 0694.22006
[3] Freund, P.G.O., Olson, M.: Non-archimedean strings. Phys. Lett.199 B, 186–190 (1987)
[4] Freund, P.G.O., Witten, E.: Adelic string amplitudes. Phys. Lett.199 B, 191–194 (1987)
[5] Gervais, J.-L.:p-Adic analyticity and Virasoro algebras for conformal theories in more than two dimensions. Phys. Lett.201 B, 306–310 (1988)
[6] Brekke, L., Freund, P.G.O., Olson, M., Witten, E.: Non-archimedean string dynamics. Nucl. Phys.B 302, 365–402 (1988)
[7] Frampton, P.H., Okada, Y.:p-adic stringN-point function. Phys. Rev. Lett.60, 484–486 (1988)
[8] Knizhnik, V.G., Polyakov, A.M.: Unpublished (1987)
[9] Parisi, G.: Onp-adic functional integral. Mod. Phys. Lett. A3, 639–643 (1988)
[10] Spokoiny, B.L.: Quantum geometry of non-archimedean particles and strings. Phys. Lett.208 B, 401–406 (1988)
[11] Zhang, R.B.: Lagrangian formulation of open and closedp-adic strings. Phys. Lett.209 B, 229–232 (1988)
[12] Zabrodin, A.: Non-archimedean strings and Bruhat-Tits trees. Commun. Math. Phys.123, 463–483 (1989) · Zbl 0676.22006
[13] Chekhov, L., Mironov, A., Zabrodin, A.: Multiloop calculations inp-adic string theory and Bruhat-Tits trees. Commun. Math. Phys.125, 675–711 (1989) · Zbl 0685.22005
[14] Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compos. Math.24, 129–174 (1972) · Zbl 0228.14011
[15] Manin, Yu.I.:p-adic automorphic functions. Sovr. Probl. Mat., Vol.3, 5–92. Moscow: VINITI 1974 (in Russian) Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Berlin, Heidelberg, New York: Springer 1980
[16] Bruhat, F., Tits, J.: Group reductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES41, 5–251 (1972)
[17] Serre, J.P.: Trees. Berlin, Heidelberg, New York: Springer 1980
[18] Zinoviev, Yu.M.: LatticeR-gauge theories. Theor. Math. Phys.49, No. 2 (1981)
[19] Friedan, D., Martinec, E., Shenker, S.H.: Nucl. Phys. B271, 93 (1986)
[20] Zinoviev, Yu.M.: Duality in the Abelian gauge lattice theories. Theor. Math. Phys.43, N3, 481–490 (1980)
[21] Wilson, K.G.: Confinement of quarks. Phys. Rev. D10, 2445–2459 (1974)
[22] Villain, J.: Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys.36, 581–590 (1975)
[23] Mumford, D.: Tata lectures on Theta I, II. Boston, Basel, Stuttgart: Birkhäuser 1983, 1984 · Zbl 0509.14049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.