×

zbMATH — the first resource for mathematics

Role of optimal control theory in cancer chemotherapy. (English) Zbl 0702.92007
Summary: This paper presents a review of the ways in which optimal control theory interacts with cancer chemotherapy. There are three broad areas of investigation. One involves miscellaneous growth kinetic models, the second involves cell cycle models, and the third is a classification of “other models”. Both normal and tumor cell populations are included in a number of the models. The concepts of deterministic optimal control theory are applied to each model in such a way as to present a cohesive picture. There are applications to both experimental and clinical tumors. Suggestions for designing better chemotherapy strategies are presented.

MSC:
92C50 Medical applications (general)
49J99 Existence theories in calculus of variations and optimal control
Software:
NLPQL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abulesz, E.-M.; Lyberatos, G., Novel approach for determining optimal treatment regimen for cancer chemotherapy, Int. J. syst. sci., 19, 1483-1497, (1988) · Zbl 0643.92005
[2] Acharya, R.S.; Sundareshan, M.K., Development of optimal drug administration strategies for cancer-chemotherapy in the framework of systems theory, Int. J. bio-med. comput., 15, 139-150, (1984)
[3] Aroesty, J.; Lincoln, T.; Shapiro, N.; Boccia, G., Tumor growth and chemotherapy: mathematical methods, computer simulations, and experimental foundations, Math. biosci., 17, 243-300, (1973) · Zbl 0257.92002
[4] Athans, M.; Falb, P.L., Optimal control — an introduction to the theory and its applications, (1966), McGraw-Hill New York · Zbl 0186.22501
[5] Axelrod, D.E.; Kuczek, T., Clonal heterogeneity in populations of normal cells and tumor cells, Comput. math. appl., 18, 871-881, (1989)
[6] Bahrami, K.; Kim, M., Optimal control of multiplicative control systems arising from cancer therapy, IEEE trans. autom. control, AC-20, 537-542, (1975) · Zbl 0308.92016
[7] Bard, Y., Nonlinear parameter estimation, (1974), Academic New York · Zbl 0345.62045
[8] Bellman, R., Mathematical methods in medicine, (1983), World Scientific Publishing Singapore · Zbl 0527.92004
[9] Bellman, R.; Jacquez, J.A.; Kalaba, R., Some mathematical aspects of chemotherapy: I. one organ models, Bull. math. biophys., 22, 181-198, (1960)
[10] Bellman, R.; Jacquez, J.A.; Kalaba, R., Mathematical models of chemotherapy, (), 57-66
[11] Bellman, R.; Jacquez, J.A.; Kalaba, R.; Kotkin, B., A mathematical model of drug distribution in the body: implications for cancer chemotherapy, (), 1694-1707
[12] Berglas, A., Cancer: nature, cause and cure, (1957), Institute Pasteur Paris
[13] Bernard-Well, E., A general model for the simulation of balance, imbalance and control by agonistic antagonistic biological couples, Math. modeling, 7, 1587-1600, (1986) · Zbl 0631.92001
[14] Bernard-Weil, E.; Pertuiset, B., Mathematical model for hormonal therapy (vasopressin, corticoids) in cerebral collapse and malignant tumors of the brain (36 cases), Neurol. res., 5, 19-35, (1983)
[15] Bertuzzi, A.; Gandolfi, A.; Giovenco, M.A., Mathematical models of the cell cycle with a view to tumor studies, Math. biosci., 53, 159-188, (1981) · Zbl 0525.92005
[16] Biran, Y.; McInnis, B., Optimal control of bilinear systems: time-varying effects of cancer drugs, Automatica, 15, 325-329, (1979) · Zbl 0405.93035
[17] Bischoff, K.B., Physiological pharmacokinetics, Bull. math. biol., 48, 309-322, (1986) · Zbl 0603.92010
[18] Bischoff, K.B.; Dedrick, R.L., Generalized solution to linear two-compartment, open model for drug distribution, J. theor. biol., 29, 63-83, (1970)
[19] Brook, J.; Bateman, J.R.; Gocka, E.F.; Nakamura, E.; Steinfeld, J.L., Long-term low dose melphalan treatment of multiple myeloma, Arch. intern. med., 131, 545-548, (1973)
[20] Buckles, R., New horizons in drug delivery, CA-cancer J. clin., 28, 343-355, (1978)
[21] Cherruault, Y., Mathematical modelling in biomedicine. optimal control of biomedical systems, (1986), D. Reidel Boston
[22] Claude, D., Automatique et regulation biologique, (), 496-506
[23] Cohen, A.M.; Greenfield, A.; Wood, W.C.; Waltman, A.; Novelline, R.; Athanasoulis, C.; Schaeffer, N.J., Treatment of hepatic metastates by transaxillary hepatic artery chemotherapy using an implanted drug pump, Cancer, 51, 2013-2019, (1983)
[24] Coldman, A.J.; Goldie, J.H., A model for the resistance of tumor cells to cancer chemotherapeutic agents, Math. biosci, 65, 291-307, (1983) · Zbl 0519.92008
[25] Coldman, A.J.; Goldie, J.H., Role of mathematical modeling in protocol formulation in cancer chemotheraphy, Cancer treat. rep., 69, 1041-1048, (1985)
[26] Coldman, A.J.; Goldie, J.H.; Ng, V., The effect of cellular differentiation on the development of permanent drug resistance, Math. biosci., 74, 177-198, (1985) · Zbl 0576.92009
[27] Collins, J.M.; Dedrick, R.L., Pharmacokinetics of anticancer drugs, (), 77-99
[28] Collins, J.M.; Dedrick, R.L., Distributed model for drug delivery to CSF and brain tissue, Am. J. physiol. 245 (reg. integrative comp. physiol. 14), R303-R310, (1983)
[29] Cox, E.B.; Woodbury, M.A.; Meyers, L.E., A new model for tumor growth analysis based on a postulated inhibitory substance, Comp. biomed. res., 13, 437-445, (1980)
[30] Creasey, W.; Fegley, K.; Karreman, G.; Long, V., Designing optimal cancer chemotheraphy regimens, (), 379-385
[31] Dedrick, R.L., Interspecies scaling of regional drug delivery, J. pharm. sci., 75, 1047-1052, (1986)
[32] Degos, L.; Castaigne, S.; Tilly, H.; Sigaux, F.; Daniel, M.T., Treatment of leukemia with low-dose ara-C: a study of 160 cases, Semin. oncol., 12, 2, 196-199, (1985), Suppl. 3)
[33] DeWys, W.D., Studies correlating the growth rate of a tumor and its metastases and providing evidence for tumor-related systemic growth-retarding factors, Cancer res., 32, 374-379, (1972)
[34] Dibrov, B.F.; Zhabotinsky, A.M.; Neyfakh, Yu.A.; Orlova, M.P.; Churikova, L.I., Optimal scheduling for cell synchronization by cycle-phase-specific blockers, Math. biosci., 66, 167-185, (1983) · Zbl 0526.92002
[35] Dibrov, B.F.; Zhabotinsky, A.M.; Neyfakh, Yu.A.; Orlova, M.P.; Churikova, L.I., Mathematical model of cancer chemotherapy. periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy, Math. biosci., 73, 1-31, (1985) · Zbl 0565.92006
[36] Dibrov, B.F.; Zhabotinsky, A.M.; Neifakh, Yu.A.; Orlova, M.P.; Churikova, L.I., Optimization of the action of phase-specific agents on normal and transformed cell populations, Biophysics, Biofizika, 30, 6, 1050-1063, (1985), Eng. transl. of · Zbl 0565.92006
[37] Dibrov, B.F.; Gel’Fand, Ye.V.; Zhabotinsky, A.M.; Neifakh, Yu.A.; Orlova, M.P., Population dynamics of proliferating cells on periodic phase-specific exposure, Biophysics, Biofizika, 33, 5, 895-904, (1988), Eng. transl. of
[38] Dorr, R.T.; Trinca, C.E.; Griffith, K.; Dombrowsky, P.L.; Salmon, S.E., Limitations of a portable infusion pump in ambulatory patients receiving continuous infusion of anticancer drugs, Cancer treat. rep., 63, 211-213, (1979)
[39] Ensminger, W.D.; Gyves, J.W., Regional cancer chemotherapy, Cancer treat. rep., 68, 101-115, (1984)
[40] Ensminger, W.; Niederhuber, J.; Dakhil, S.; Thrall, J.; Wheeler, R., Totally implanted drug delivery system for hepatic arterial chemotherapy, Cancer treat. rep., 65, 393-400, (1981)
[41] Farhangi, M.; Osserman, E.F., The treatment of multiple myeloma, Sem. haematol., 10, 149-161, (1973)
[42] Fegley, K.A.; Long, V.P., Modeling and analysis in optimal therapy, (), 263-289
[43] Frenzen, C.L.; Murray, J.D., A cell kinetics justification for Gompertz’ equation, SIAM J. appl. math., 46, 614-629, (1986) · Zbl 0608.92012
[44] Fundakowski, R.A., Stability and control of compartmental systems with application to cell kinetics and cancer therapy, ()
[45] Fundakowski, R.A.; Sundareshan, M.K., Stability and control of cell cycle kinetics with application to cancer chemotherapy, (), 1138-1140
[46] Fundakowski, R.A.; Sundareshan, M.K., Periodic optimization of a class of bilinear systems with application to control of compartmental structures arising in cancer therapy, (), 9
[47] Gaglio, S.; Genovesi, M.; Ruggiero, C.; Spinelli, G.; Nicolini, C.; Bonadonna, G.; Valagussa, P., Expert systems for cancer chemotherapy, Comput. math. appl., 14, 793-802, (1987)
[48] Goh, C.J.; Teo, K.L., MISER: an optimal control software theory and user manual, (1987), Depart. of Industrial and Systems Engineering, National Univ. of Singapore Singapore
[49] Goldie, J.H.; Coldman, A.J., The genetic origin of drug resistance in neoplasms: implications for systemic therapy, Cancer res., 44, 3643-3653, (1984)
[50] Goldie, J.H.; Coldman, A.J., Application of theoritical models to chemotherapy protocol design, Cancer treat. rep., 70, 127-131, (1986) · Zbl 0613.92006
[51] Gray, J.W., Cell cycle analysis of perturbed cell populations: computer simulations of sequential DNA distributions, Cell tissue kinet., 9, 499-516, (1976)
[52] Gray, J.W., Quantitative cytokinetics: cellular response to cell cycle specific agents, Pharmacol. therap., 22, 163-197, (1983)
[53] Gray, J.W., Quantitative cytokinetics: cellular response to cell cycle specific agents, (), 44-84, Sect. 121
[54] Gray, J.W.; Pallavicini, M.G., Quantitative cytokinetic analysis reviewed, (), 107-123
[55] Gray, J.W.; Dolbeare, F.; Pallavicini, M.G.; Beisker, W.; Waldman, F., Cell cycle analysis using flow cytometry, Int. J. radiat. biol., 49, 237-255, (1986)
[56] Gray, J.W.; Dolbeare, F.; Pallavicini, M.G.; Vanderlaan, M., Flow cytokinetics, (), 93-135
[57] Gyllenberg, M.; Webb, G.F., Quiescence as an explanation of Gompertzian tumor growth, Growth, develop. aging, 53, 25-33, (1989)
[58] Hahn, G.M., State vector description of the proliferation of Mammalian cells in tissue culture. I. exponential growth, Biophys. J., 6, 275-290, (1966)
[59] Hahn, G.M., A formalism describing the kinetics of some Mammalian cell populations, Math. biosci., 6, 295-304, (1970)
[60] Halkin, H., A maximum principle of the Pontryagin type for systems described by nonlinear difference equations, SIAM J. control optim., 4, 90-111, (1966) · Zbl 0152.09301
[61] Heppner, G.H.; Miller, B.E., Therapeutic implications of tumor heterogeneity, Semin. oncol., 16, 91-105, (1989)
[62] Himmelstein, K.J.; Bischoff, K.B., Mathematical representations of cancer chemotherapy effects, J. pharmacokinet. biopharm., 1, 51-68, (1973)
[63] Himmelstein, K.J.; Bischoff, K.B., Models of ara-C chemotherapy of L1210 leukemia in mice, J. pharmacokinet. biopharm., 1, 69-81, (1973)
[64] Hohn, D.C.; Rayner, A.A.; Economou, J.S.; Ignoffo, R.J.; Lewis, B.J.; Stagg, R.J., Toxicities and complications of implanted pump hepatic arterial and intravenous floxuridine infusion, Cancer, 57, 465-470, (1986)
[65] Holford, H.H.G.; Sheiner, L.B., Pharmacokinetic and pharmacodynamic modeling in vivo, CRC crit. rev. bioeng., 5, 4, 273-322, (1981)
[66] Howard, A.; Pelc, S.R., Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage, Heredity (suppl.), 6, 261-273, (1953)
[67] Jacquez, J.A.; Bellman, R.; Kalaba, R., Some mathematical aspects of chemotherapy. II. the distribution of a drug in the body, Bull. math. biophys., 22, 309-322, (1960)
[68] Kalaba, R.; Spingarn, K., Control identification and input optimization, (1982), Plenum New York · Zbl 0549.93015
[69] Kashyap, R.L.; Rao, A.R., Dynamic stochastic models from empirical data, (1977), Academic New York
[70] Kim, M.; Woo, K.B.; Kim, M.; Woo, K.B., Kinetic analysis of cell size and DNA content distributions during tumor cell proliferation: ehrlich ascites tumor study, Cell tissue kinet., Cell tissue kinet., 8, 387-390, (1975)
[71] Kim, M.; Bahrami, K.; Woo, K.B., A discrete-time model for cell-age, size, and DNA distributions of proliferating cells, and its application to the movement of the labeled cohort, IEEE trans. biomed. eng., 21, 387-399, (1974)
[72] Kim, M.; Bahrami, K.; Woo, K.B., Mathematical description and analysis of cell cycle kinetics and the application to ehrlich ascites tumor, J. theor. biol., 50, 437-459, (1975)
[73] Kim, M.; Woo, K.B.; Perry, S., Quantitative approach to the design of antitumor drug dosage schedule via cell cycle kinetics and systems theory, Ann. biomed. eng., 5, 12-33, (1977)
[74] Kimmel, M., Cellular population dynamics. II. investigation of solutions, Math. biosci., 48, 225-239, (1980) · Zbl 0425.92004
[75] Kimmel, M.; Świerniak, A., On a certain optimal control problem related to the optimal chemotherapy of leukemia, Zesz. nauk politech. slask. ser. automat., 65, 121-130, (1982), (in Polish, English abstract)
[76] Kreis, W.; Chaudri, F.; Chan, K.; Allen, S.; Budman, D.R.; Schulman, P.; Weiselberg, L.; Freeman, J.; Deere, M.; Vinciguerra, V., Pharmacokinetics of low-dose 1-β-{\scd}-arabinofuranosylcytosine given by continuous infusion over twenty-one days, Cancer res., 45, 6498-6501, (1985)
[77] Leith, J.T.; Dexter, D.L., Mammalian tumor cell heterogeneity, (1986), CRC Boca Raton, Fla
[78] Long, V.P., A systematic approach to the design of optimal chemotherapy regimens, ()
[79] Long, V.; Fegley, K.A., An approach to optimal chemotherapy, (), 71-75
[80] Macdonald, J.S., Continuous low-dose infusion of fluorouracil: is the benefit worth the cost?, J. clin. oncol., 7, 412-414, (1989)
[81] Maceratini, R.; Rafanelli, M.; Pisanelli, D.M.; Crollari, S., Expert systems and the pancreatic cancer problem: decision support in the preoperative diagnosis, J. biomed. eng., 11, 487-510, (1989)
[82] McKinstry, D.W., Implanted drug delivery system for regional cancer chemotherapy, Res. resources rep., 5, 1-5, (1981), (July)
[83] Martin, R.B.; Fisher, M.E.; Minchin, R.F.; Teo, K.L., A mathematical model of cancer chemotherapy with an optimal selection of parameters, Math. biosci., 99, 205-230, (1990) · Zbl 0724.92016
[84] Mayneord, W.V., On a law of growth of Jensen’s rat sarcoma, Am. J. cancer, 16, 841-846, (1932)
[85] Mirro, J.; Dow, L.W.; Kalwinsky, D.K.; Dahl, G.V.; Weck, P.; Whisnant, J.; Murphy, S.B., Phase I-II study of continuous-infusion high-dose human lymphoblastoid interferon and the in vitro sensitivity of leukemia progenitors in nonlymphocytic leukemia, Cancer treat. rep., 70, 363-367, (1986)
[86] Mohler, R.R., Bilinear control processes: with applications to engineering, ecology and medicine, (1973), Academic New York · Zbl 0343.93001
[87] Murray, J.M., Optimal control for a cancer chemotherapy problem with general growth and loss functions, Math. biosci., 98, 273-287, (1990) · Zbl 0693.92009
[88] Murray, J.M., Some optimal control problems in cancer chemotherapy with a toxicity limit, Math. biosci., 100, 49-67, (1990) · Zbl 0778.92012
[89] Norton, L., Letter to the editor—reply, Cancer res., 49, 6444, (1989)
[90] Norton, L.; Simon, R., Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer treat. rep., 61, 1307-1317, (1977)
[91] Oğuztöreli, M.N.; Tsokos, C.P.; Akabutu, J., A kenetic study in chemotherapy, Appl. math. comput., 12, 255-300, (1983) · Zbl 0517.92004
[92] C.E. Pedreira and V.B. Vila, Optimal schedule for chemotherapy, Math. Prog. Ser. B, to appear.
[93] Pedreira, C.E.; Vila, V.B.; Schettini, M., A system approach to cancer chemotherapy, Proc. 7th congress bras. aut., CBA-IFAC, 1050-1055, (1988)
[94] Pereira, F.M.F.L.; Pinho, M.R.M.; Pedreira, C.E.; Fernandes, M.H.R., Design of multidrug cancer chemotherapy via optimal control., ()
[95] Rashevsky, N., Outline of a mathematical approach to the cancer problem, Bull. math. biophys., 7, 69-81, (1945)
[96] Rashevsky, N., Mathematical biophysics, (1948), Univ. of Chicago Press Chicago · JFM 64.1148.01
[97] Retsky, M.; Swartzendruber, D.; Wardwell, R.; Bame, P.; Retsky, M.; Swartzendruber, D.; Wardwell, R.; Bame, P., Correspondence re: larry norton, A Gompertzian model of human breast cancer growth, Cancer res., Cancer res., 49, 6443-6444, (1989)
[98] M.W. Retsky, D.E. Swartzendruber, R.H. Wardwell, and P.D. Bame, Is Gompertzian or exponential kinetics a valid description of individual human cancer growth? Med. Hypoth., to appear.
[99] Sachs, L., Growth, differentiation and the reversal of malignancy, Sci. am., 254, 40-47, (1986), (Jan.)
[100] Sachs, L., Cell differentiation and tumour suppression, (), 217-233
[101] Salmon, S.E., Kinetic rationale for adjuvant chemotherapy of cancer, (), 15-27
[102] Salmon, S.E.; Durie, B.G.M., Application of kinetics to chemotherapy for multiple myeloma, (), 865-878
[103] F.R. Schandl, Optimal treatment strategies in cancer chemotherapy, Optim. Control Appl. Methods, to appear.
[104] Schittkowski, K., NLPQL: a Fortran subroutine solving constrained nonlinear programming problems, Oper. res. ann., 5, 485-500, (1985)
[105] Shepard, K.V.; Levin, B.; Karl, R.C.; Faintuch, J.; DuBrow, R.A.; Hagle, M.; Cooper, R.M.; Beschorner, J.; Stablein, D., Therapy for metastatic colorectal cancer with hepatic artery infusion chemotherapy using a subcutaneous implanted pump, J. clin. oncol., 3, 161-169, (1985)
[106] Shin, K.G.; Pado, R., Design of optimal cancer chemotherapy using a continuous-time state model of cell kinetics, Math. biosci., 59, 225-248, (1982) · Zbl 0486.92007
[107] Skipper, H.E., On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bull. math. biol., 48, 253-278, (1986)
[108] Skipper, H.E.; Schabel, F.M.; Wilcox, W.S., Experimental evaluation of potential anticancer agents., On the criteria and kinetics associated with “curability” of experimental leukemia, Cancer chemotherap. rep., 35, 1-111, (1964), XIII
[109] Speer, J.F.; Petrosky, V.E.; Retsky, M.W.; Wardwell, R.H., A stochastic numerical model of breast cancer growth that simulates clinical data, Cancer res., 44, 4124-4130, (1984)
[110] Spendley, W.; Hext, G.; Himsworth, F., Sequential applications of simplex design in optimization and evolutionary operations, Technometrics, 4, 444-461, (1962) · Zbl 0121.35603
[111] Steel, G.G., Growth kinetics of tumours, (1977), Oxford Univ. Press Oxford
[112] Sullivan, P.W.; Salmon, S.E., Kinetics of tumor growth and regression in igg multiple myeloma, J. clin. invest., 10, 1697-1708, (1972)
[113] Sundareshan, M.K.; Acharya, R.S., Optimal control in cancer therapy by simultaneous consideration of normal and cancer cell proliferation kinetics, Int. J. syst. sci., 15, 773-776, (1984) · Zbl 0545.92002
[114] Sundareshan, M.K.; Fundakowski, R., A model reference adaptive scheme for identification of a multicompartmental model for cell proliferation kinetics, Int. J. syst. sci., 15, 229-247, (1984) · Zbl 0535.93018
[115] Sundareshan, M.K.; Fundakowski, R.S., Periodic optimization of a class of bilinear systems with application to control of cell proliferation and cancer therapy, IEEE trans. syst. man cybern., SMC-15, 102-115, (1985) · Zbl 0572.93038
[116] Sundareshan, M.K.; Fundakowski, R.A., Stability and control of a class of compartmental systems with application to cell proliferation and cancer therapy, IEEE trans. autom. control, AC-31, 1022-1032, (1986)
[117] Swan, G.W., Some strategies for harvesting a single species, Bull. math. biol., 37, 659-673, (1977) · Zbl 0323.92014
[118] Swan, G.W., Some current mathematical topics in cancer research, (1977), Ann Arbor, published for the Society for Mathematical Biology by University Microfilms International
[119] Swan, G.W., Optimal control in some cancer chemotherapy problems, Int. J. syst. sci., 11, 223-237, (1980) · Zbl 0426.92007
[120] Swan, G.W., Optimal control applications in biomedical engineering—a survey, Optim. control appl. methods, 2, 311-334, (1981) · Zbl 0467.92006
[121] Swan, G.W., Optimization of human cancer radiotherapy, (1981), Springer-Verlag New York · Zbl 0464.92002
[122] Swan, G.W., Applications of optimal control theory in biomedicine, (1984), Marcel Dekker New York · Zbl 0554.92002
[123] Swan, G.W., Optimal control applications in the chemotherapy of multiple myeloma, IMA J. math. appl. med. biol., 2, 139-160, (1985) · Zbl 0609.92005
[124] Swan, G.W., Optimal control in chemotherapy, Biomed. meas. inf. control, 1, 3-15, (1986) · Zbl 0613.92007
[125] Swan, G.W., Cancer chemotherapy: optimal control using the verhulst-pearl equation, Bull. math. biol., 48, 381-404, (1986) · Zbl 0613.92007
[126] Swan, G.W., Optimal control analysis of a cancer chemotherapy problem, IMA J. math. appl. med. biol., 4, 171-184, (1987) · Zbl 0616.92002
[127] Swan, G.W., Tumor growth models and cancer chemotherapy, (), 91-179
[128] Swan, G.W., General applications of optimal control theory in cancer chemotherapy, IMA J. math. appl. med. biol., 5, 303-316, (1988) · Zbl 0678.92003
[129] Swan, G.W.; Alexandro, F., Modeling methotrexate therapy for treatment of brain tumors, (), 289-293
[130] Swan, G.W.; Vincent, T.L., Optimal control analysis in the chemotherapy of igg multiple myeloma, Bull. math. biol., 39, 317-337, (1977) · Zbl 0354.92041
[131] A. Świerniak, Control problems for differential equation models of cancer cells kinetics, Proc. Int. Conf. Differential Equations, to appear. · Zbl 0707.92012
[132] Tracy, R.; Zietz, S.; Desaive, C.; Nicolini, C., Realistic models and simulation as an aid to cancer treatments, (), 87-94
[133] Tzafestas, S.G., Knowledge engineering approach to system modeling, diagnosis, supervision and control, Syst. anal. model. simul., 6, 3-21, (1989)
[134] Vaidya, V.G.; Alexandro, F.J., Evaluation of some mathematical models for tumor growth, Int. J. bio-med. comput., 13, 19-35, (1982)
[135] Verhagen, A.M.W., Growth curves and their functional form, Aust. J. stat., 2, 122-127, (1960) · Zbl 0108.32901
[136] Verhulst, P.F., Correspondence mathematique et physique 10, (), 64-66, reprinted
[137] Vogelzang, N.J., Continuous infusion chemotherapy: a critical review, J. clin. oncol., 2, 1289-1301, (1984)
[138] Weiss, G.R.; Garnick, M.B.; Osteen, R.T.; Steele, G.D.; Wilson, R.E.; Schade, D.; Kaplan, W.D.; Boxt, L.M.; Kandarpa, K.; Mayer, R.J.; Frei, E.T., Long-term hepatic arterial infusion of 5-fluorodeoxyuridine for liver metastases using an implantable infusion pump, J. clin. oncol., 1, 337-344, (1983)
[139] Wheldon, T.E., Mathematical models in cancer research, (1988), Adam Hilger Bristol · Zbl 0696.92002
[140] Zietz, S.; Nicolini, C., Mathematical approaches to optimization of cancer chemotherapy, Bull. math. biol., 41, 305-324, (1979) · Zbl 0404.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.