zbMATH — the first resource for mathematics

Error analysis of some finite element methods for the Stokes problem. (English) Zbl 0702.65095
The author proves the optimal convergence for some two-dimensional finite element methods for the Stokes equations. First two families of ‘Taylor- Hood’ type methods: the triangular \(P_ 3-P_ 2\) element and the \(Q_ k-Q_{k-1}\), \(k\geq 2\), family of quadrilateral elements are considered. Finally two new low-order methods with piecewise constant approximations for the pressure are introduced and analyzed. Macro-element technique, introduced by the author [ibid. 42, 9-23 (1984; Zbl 0535.76037)] is used in a slightly more practical form for error analysis.
It is claimed that the results of the paper are trivially also valid when the same finite element spaces are used for equations of (nearly) incompressible elasticity. The author admits that some of the results presented herein have also been obtained by F. Brezzi and R. S. Falk [Stability of a higher order Hood-Taylor method, SIAM, J. Numer. Anal. (to appear)].
Reviewer: H.K.Verma

65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
Full Text: DOI
[1] Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179 – 192. · Zbl 0258.65108 · doi:10.1007/BF01436561 · doi.org
[2] I. Babuška and A. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations , Academic Press, New York, 1973, pp. 5-359.
[3] I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039 – 1062. · Zbl 0472.65083
[4] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), no. 2, 211 – 224. · Zbl 0423.65058 · doi:10.1007/BF01399555 · doi.org
[5] J. M. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), no. 4, 722 – 731. · Zbl 0521.76027 · doi:10.1137/0720048 · doi.org
[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047
[7] Franco Brezzi and Richard S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991), no. 3, 581 – 590. · Zbl 0731.76042 · doi:10.1137/0728032 · doi.org
[8] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[9] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77 – 84 (English, with Loose French summary). · Zbl 0368.65008
[10] Michel Fortin, Old and new finite elements for incompressible flows, Internat. J. Numer. Methods Fluids 1 (1981), no. 4, 347 – 364. · Zbl 0467.76030 · doi:10.1002/fld.1650010406 · doi.org
[11] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[12] J. Pitkäranta and R. Stenberg, Analysis of some mixed finite element methods for plane elasticity equations, Math. Comp. 41 (1983), no. 164, 399 – 423. · Zbl 0537.73057
[13] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111 – 143 (English, with French summary). · Zbl 0608.65013
[14] Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9 – 23. · Zbl 0535.76037
[15] Rolf Stenberg, On some three-dimensional finite elements for incompressible media, Comput. Methods Appl. Mech. Engrg. 63 (1987), no. 3, 261 – 269. · Zbl 0684.73036 · doi:10.1016/0045-7825(87)90072-7 · doi.org
[16] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér. 18 (1984), no. 2, 175 – 182. · Zbl 0557.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.