Inversion of the Miura transformation. (English. Russian original) Zbl 0702.35222

Math. Notes 46, No. 4, 762-769 (1989); translation from Mat. Zametki 46, No. 4, 14-24 (1989).
It is proved that the global (\(\forall\, x\in\mathbb{R})\) inverse Miura transformation is possible, more precisely, it is proved that the Riccati equation \(v(x,t)=u_x(x,t)+u^2(x,t)\) is solvable for all \(x\in\mathbb{R}\), under the boundary conditions \(u(x,t)\sim C_1\) (resp. \(C_2)\) for \(x\to -\infty\) (resp. \(x\to \infty)\), \(v(x,t)\sim a^2\) (resp. \(b^2)\) for \(x\to -\infty\) (resp. \(x\to \infty)\) (where \(c_1=\pm a\), \(c_ 2\pm b\), \(a>0\), \(b>0)\) and the summability conditions \[ \int^{0}_{- \infty}(1+| x|)| v(x)-a^2| \,dx+\int^{\infty}_{0}(1+x)| v(x)-b^2| \,dx<\infty, \]
\[ \int^{\infty}_{-\infty}[| \phi'(x)|^ 2+v(x)| \phi(x)|^2] \,dx>0,\quad \forall \phi (x)\in C_0^{\infty}(\mathbb{R}). \]
Reviewer: Y. C. Yang


35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
34L25 Scattering theory, inverse scattering involving ordinary differential operators
Full Text: DOI


[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, SIAM, Philadelphia (1981). · Zbl 0472.35002
[2] V. Buslaev and V. Fomin, ?On the inverse scattering problem for the one-dimensional Schrödinger equation on the entire axis,? Vestn. Leningr. Univ. Mat. Mekh. Astron., No. 1, Issue 1, 56-64 (1962). · Zbl 0243.34013
[3] V. A. Marchenko, Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977). · Zbl 0399.34022
[4] I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem (1965). · Zbl 0143.36505
[5] F. S. Rofe-Beketov and A. M. Khol’kin, ?The connection between spectral and oscillation properties of differential-operator equations of arbitrary order. I. Sturm-type theorems,? Teor. Funktsii Funktsional. Anal. i Prilozhen. (Khar’kov), No. 48, 101-111 (1988).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.