Dekkers, A. L. M.; Einmahl, J. H. J.; De Haan, L. A moment estimator for the index of an extreme-value distribution. (English) Zbl 0701.62029 Ann. Stat. 17, No. 4, 1833-1855 (1989). Let \(X_ 1,X_ 2,..\). be a sequence of i.i.d. random variables. Suppose for some constants \(a_ n>0\) and \(b_ n\), \(n=1,2,...\), and some \(- \infty <\gamma <\infty:\) \[ \lim_{n\to \infty}P\{a_ n^{-1}(\max (X_ 1,...,X_ n)-b_ n)\leq x\}=G_{\gamma}(x),-\infty <x<\infty, \] where \(G_{\gamma}(x)=\exp (-(1+\gamma x)^{-1/\gamma})\) is the extreme-value distribution. The authors consider the estimation problem for the index \(\gamma\). They extend Hill’s estimator for the index of a distribution function with regularly varying tail [B. M. Hill, ibid. 3, 1163-1174 (1975; Zbl 0323.62033)] to an estimate for \(\gamma\). Consistency and asymptotic normality are proved. The authors also use the estimator for quantile and endpoint estimation. Reviewer: W.Dziubdziela Cited in 13 ReviewsCited in 241 Documents MSC: 62E20 Asymptotic distribution theory in statistics 62G20 Asymptotic properties of nonparametric inference 62G30 Order statistics; empirical distribution functions Keywords:quantile estimation; extreme-value distribution; Hill’s estimator; index of a distribution function; regularly varying tail; Consistency; asymptotic normality; endpoint estimation Citations:Zbl 0323.62033 PDF BibTeX XML Cite \textit{A. L. M. Dekkers} et al., Ann. Stat. 17, No. 4, 1833--1855 (1989; Zbl 0701.62029) Full Text: DOI OpenURL