A moment estimator for the index of an extreme-value distribution. (English) Zbl 0701.62029

Let \(X_ 1,X_ 2,..\). be a sequence of i.i.d. random variables. Suppose for some constants \(a_ n>0\) and \(b_ n\), \(n=1,2,...\), and some \(- \infty <\gamma <\infty:\) \[ \lim_{n\to \infty}P\{a_ n^{-1}(\max (X_ 1,...,X_ n)-b_ n)\leq x\}=G_{\gamma}(x),-\infty <x<\infty, \] where \(G_{\gamma}(x)=\exp (-(1+\gamma x)^{-1/\gamma})\) is the extreme-value distribution.
The authors consider the estimation problem for the index \(\gamma\). They extend Hill’s estimator for the index of a distribution function with regularly varying tail [B. M. Hill, ibid. 3, 1163-1174 (1975; Zbl 0323.62033)] to an estimate for \(\gamma\). Consistency and asymptotic normality are proved. The authors also use the estimator for quantile and endpoint estimation.
Reviewer: W.Dziubdziela


62E20 Asymptotic distribution theory in statistics
62G20 Asymptotic properties of nonparametric inference
62G30 Order statistics; empirical distribution functions


Zbl 0323.62033
Full Text: DOI