×

High order inverse function theorems. (English) Zbl 0701.49040

Summary: We prove several first order and high order inverse mapping theorems for maps defined on a complete metric space and provide a number of applications.

MSC:

49N45 Inverse problems in optimal control
93B05 Controllability
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Aubin, J.-P., Comportement lipschitzien des solutions de problèmes de minimisation convexes, 295, 235-238, (1982), CRAS Paris · Zbl 0503.49022
[2] Aubin, J.-P., Lipschitz behavior of solutions to convex minimization problems, Math. Operations Research, 8, 87-111, (1984) · Zbl 0539.90085
[3] Aubin, J.-P.; Cellina, A., Differential inclusions, (1984), Springer Verlag
[4] Aubin, J.-P.; Ekeland, I., Applied nonlinear analysis, (1984), Wiley-Interscience
[5] Aubin, J.-P.; Frankowska, H., On the inverse function theorem, J. Math. Pures & Appliquées, 66, 71-89, (1987) · Zbl 0643.46033
[6] Ambrosetti, A.; Prodi, G., On the inversion of some differential mappings with singularities between Banach spaces, Ann. Math. Pure Appl., 93, 231-247, (1973) · Zbl 0288.35020
[7] Beauzamy, P., Introduction to Banach spaces and their geometry, North Holland, Math. Study, 68, (1985) · Zbl 0585.46009
[8] Clarke, F. H., Optimization and nonsmooth analysis, (1983), Wiley-Interscience · Zbl 0582.49001
[9] Dmitruk, A. V.; Milyutin, A. A.; Osmolovskii, N. P., Ljusternik’s theorem and the theory of extrema, Uspekhi Mat. Nauk, 35, 6, 11-46, (1980), Russian Math Surveys, 35: 6, 11-51 · Zbl 0479.49015
[10] Ekeland, I., Nonconvex minimization problems, Bull. Am. Math. Soc., 1, 443-474, (1979) · Zbl 0441.49011
[11] Fattorini, H., A unified theory of necessary conditions for nonlinear nonconvex systems, Appl. Math. & Opt., 2, 141-184, (1987) · Zbl 0616.49015
[12] Fattorini H. & Frankowska H. (to appear) Necessary conditions for infinite dimensional control problems.
[13] Frankowska, H., Thèorème d’application ouverte pour des correspondances, 302, 559-562, (1986), CRAS Paris · Zbl 0588.49008
[14] Frankowska, H., An open mapping principle for set-valued maps, J. Math. Analysis & Appl., 127, 172-180, (1987) · Zbl 0643.46034
[15] Frankowska, H., Local controllability and infinitesimal generators of semigroups of set-valued maps, SIAM J. Control & optimization, 25, 412-432, (1987) · Zbl 0625.49015
[16] Frankowska, H., Théorèmes d’application ouverte et de fonction inverse, 305, 773-776, (1987), CRAS Paris · Zbl 0635.46041
[17] Frankowska H. (1989) Local controllability of control systems with feed-backs. J. Opt. Th. & Appl., n° 2, (to appear). · Zbl 0633.93013
[18] Frankowska, H., On the linearization of nonlinear control systems and exact reachability, Proceedings of IFIP Conference on Optimal Control of Systems Governed by Partial Differential Equations, Santiago de Compostela, (July 6-9, 1987), Springer Verlag Spain, (to appear)
[19] Frankowska H. Some Inverse Mapping Theorems. (to appear). · Zbl 0727.26014
[20] Graves, L. M., Some mapping theorem, Duke Math. J., 17, 111-114, (1950) · Zbl 0037.20401
[21] Ioffe, A. D., On the local surjection property, J. Nonlinear Analysis, 11, 565-592, (1987) · Zbl 0642.49010
[22] Ioffe, A. D.; Tikhomirov, V. M., Theory of extremal problems, (1974), Nauka Moskow
[23] Ljusternik, L. A., Conditional extrema of functionals, Mat. Sb., 41, 390-401, (1934)
[24] Mangasarian, O. L.; Fromovitz, S., The fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Analysis & Appl., 17, 37-47, (1967) · Zbl 0149.16701
[25] Robinson, S., Stability theory for systems of inequalities, part II: differentiable nonlinear systems, SIAM J. Numerical Analysis, 13, 497-513, (1976) · Zbl 0347.90050
[26] Rockafellar R.T. (1986) Lipschitzian stability in optimization: the role of nonsmooth analysis. IIASA WP-8646. · Zbl 0586.49012
[27] Rockafellar R.T. (1987) Second-order optimality conditions in nonlinear programming obtained by way of pseudo-derivatives. (preprint).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.