zbMATH — the first resource for mathematics

Meshless fracture analysis of 3D planar cracks with generalized thermo-mechanical stress intensity factors. (English) Zbl 07006027
Summary: This paper implements three dimensional meshless local Petrov-Galerkin method in the linear elastic fracture mechanics analyses of isotropic functionally graded and homogeneous materials under different thermo-mechanical loads. Energy equation based on Lord-Shulman non-Fourier heat conduction law coupled with equation of motion is applied to evaluate the effect of theoretical and realistic relaxation times on transient thermal stress intensity factors along 3D thorough or semielliptical cracks under thermo-mechanical shock. A new coordinate transform method with linear weight function is introduced to evaluate stress intensity factors by generalized interaction integral method based on incompatibility formulation. Simple linear test function is introduced, which is approximated via compatible radial basis functions and leads in eliminating internal boundary integrals of meshless method and reducing computational time. Shape functions are constructed in every Gauss point by determining the closest domain point method in preprocessing. Parametric studies are carried out in order to determine suitable radial basis functions shape parameters and penalty method parameter. Reasonable accuracy and the small number of used points are the main advantages of this method over finite element method.

74R10 Brittle fracture
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Rao, S. S., The finite element method in engineering, (2017)
[2] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Meth Eng, 46, 1, 131-150, (1999) · Zbl 0955.74066
[3] Khoei, A. R., Extended finite element method: theory and applications, (2014), John Wiley & Sons
[4] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three‐dimensional crack modelling, Int J Numer Meth Eng, 48, 11, 1549-1570, (2000) · Zbl 0963.74067
[5] Brebbia, C. A.; Walker, S., Boundary element techniques in engineering, (2016), Elsevier · Zbl 0444.73065
[6] LeVeque, R. J., Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, (2007), SIAM · Zbl 1127.65080
[7] Zong, Z.; Zhang, Y., Advanced differential quadrature methods, (2009), CRC Press · Zbl 1178.65125
[8] Atluri, S.; Zhu, T.-L., The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Computat Mech, 25, 2-3, 169-179, (2000) · Zbl 0976.74078
[9] Li, H.; Mulay, S. S., Meshless methods and their numerical properties, (2013), CRC Press · Zbl 1266.65001
[10] Li, S.; Liu, W. K., Meshfree particle methods, (2007), Springer Science & Business Media
[11] Chen, Y.; Lee, J.; Eskandarian, A., Meshless methods in solid mechanics, (2006), Springer Science & Business Media · Zbl 1106.74001
[12] Liu, G.-R.; Gu, Y.-T., An introduction to meshfree methods and their programming, (2005), Springer Science & Business Media
[13] Liu, G.-R., Meshfree methods: moving beyond the finite element method, (2009)
[14] Memari, A.; Azar, M. R.K., Quick and robust meshless analysis of cracked body with coupled generalized hyperbolic thermo-elasticity formulation, Eng Anal Bound Elements, 90, 47-62, (2018) · Zbl 1403.74087
[15] Nguyen, N. T.; Bui, T. Q.; Truong, T. T., Transient dynamic fracture analysis by an extended meshfree method with different crack-tip enrichments, Meccanica, 52, 10, 2363-2390, (2017)
[16] Nguyen, N. T.; Bui, T. Q.; Zhang, C.; Truong, T. T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng Anal Bound Elem, 44, 87-97, (2014) · Zbl 1297.74108
[17] Zhang, Y.; Guo, L.; Huang, K.; Bai, X.; Pang, J.; Zhang, Z., A numerical method for the thermal-shock crack problems of nonhomogeneous materials with inclusions based on an interaction energy integral method, Eng Fract Mech, (2017)
[18] Davis, B.; Wawrzynek, P.; Carter, B.; Ingraffea, A., 3-D simulation of arbitrary crack growth using an energy-based formulation-Part II: Non-planar growth, Eng Fract Mech, 154, 111-127, (2016)
[19] Davis, B.; Wawrzynek, P.; Ingraffea, A., 3-D simulation of arbitrary crack growth using an energy-based formulation-Part I: Planar growth, Eng Fract Mech, 115, 204-220, (2014)
[20] Kim, D. J.; Pereira, J.; Duarte, C., Analysis of three‐dimensional fracture mechanics problems: A two‐scale approach using coarse‐generalized FEM meshes, Int J Numer Meth Eng, 81, 3, 335-365, (2010) · Zbl 1183.74285
[21] Esmati, V.; Nazari, M. B.; Rokhi, M. M., Implementation of XFEM for dynamic thermoelastic crack analysis under non-classic thermal shock, Theor Appl Fract Mech, 95, 42-58, (2018)
[22] Zarmehri, N. R.; Nazari, M. B.; Rokhi, M. M., XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory, Eng Fract Mech, (2017)
[23] Hein, J.; Kuna, M., A generalized J-integral for thermal shock analyses of 3D surface cracks in spatially and temperature dependent materials, Theor Appl Fract Mech, 92, 318-330, (2017)
[24] Chang, D.; Liu, X.; Wang, B.; An, Y.; Wang, Q.; Wang, T., Non-Fourier thermal shock fracture of solids with shallow semi-elliptical surface crack, Theor Appl Fract Mech, (2018)
[25] Zamani, A.; Reza Eslami, M., Coupled dynamical thermoelasticity of a functionally graded cracked layer, J Thermal Stress, 32, 10, 969-985, (2009)
[26] Hosseini-Tehrani, P.; Eslami, M.; Daghyani, H., Dynamic crack analysis under coupled thermoelastic assumption, J Appl Mech, 68, 4, 584-588, (2001) · Zbl 1110.74481
[27] Zamani, A.; Hetnarski, R. B.; Eslami, M. R., Second sound in a cracked layer based on Lord-Shulman theory, J Thermal Stress, 34, 3, 181-200, (2011)
[28] Garg, S.; Pant, M., Numerical simulation of adiabatic and isothermal cracks in functionally graded materials using optimized element-free Galerkin method, J Thermal Stress, 40, 7, 846-865, (2017)
[29] Cai, Y.; Sun, P.; Zhu, H.; Rabczuk, T., A mixed cover meshless method for elasticity and fracture problems, Theor Appl Fract Mech, 95, 73-103, (2018)
[30] Zhang, C.; Cui, M.; Wang, J.; Gao, X.; Sladek, J.; Sladek, V., 3D crack analysis in functionally graded materials, Eng Fract Mech, 78, 3, 585-604, (2011)
[31] Liu, X.-F.; Chang, D.-M.; Wang, B.-L.; Cai, L.-R., Effect of temperature-dependency of material properties on thermal shock fracture of solids associated with non-Fourier heat conduction, Theor Appl Fract Mech, 93, 195-201, (2018)
[32] Li, W.; Song, F.; Li, J.; Abdelmoula, R.; Jiang, C., Non-Fourier effect and inertia effect analysis of a strip with an induced crack under thermal shock loading, Eng Fract Mech, 162, 309-323, (2016)
[33] Chen, Z.; Hu, K., Thermoelastic analysis of a cracked substrate bonded to a coating using the hyperbolic heat conduction theory, J Thermal Stress, 37, 3, 270-291, (2014)
[34] Guo, S.; Wang, B., Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction, Int J Heat Mass Transf, 91, 235-245, (2015)
[35] Sator, L.; Sladek, V.; Sladek, J., Bending of FGM plates under thermal load: Classical thermoelasticity analysis by a meshless method, Compos Part B: Eng, (2018)
[36] Hosseini-Tehrani, P.; Hosseini-Godarzi, A. R., Dynamic crack analysis under thermal shock considering Lord-Shulman theory, Int J Thermal Sci, 43, 10, 1003-1010, (2004)
[37] Hosseini-Tehrani, P.; Eslami, M. R.; Azari, S., Analysis of thermoelastic crack problems using Green-Lindsay Theory, J Thermal Stress, 29, 4, 317-330, (2006)
[38] Fu, P.; Johnson, S. M.; Settgast, R. R.; Carrigan, C. R., Generalized displacement correlation method for estimating stress intensity factors, Eng Fract Mech, 88, 90-107, (2012)
[39] El Kabir, S.; Dubois, F.; Pitti, R. M.; Recho, N.; Lapusta, Y., A new analytical generalization of the J and G-theta integrals for planar cracks in a three-dimensional medium, Theor Appl Fract Mech, (2018)
[40] Kim, J. H.; Paulino, G. H., Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, Int J Numer Meth Eng, 53, 8, 1903-1935, (2002) · Zbl 1169.74612
[41] Ekhlakov, A. V.; Khay, O. M.; Zhang, C.; Sladek, J.; Sladek, V., A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock, Comput Mater Sci, 57, 30-37, (2012)
[42] Wang, Z., 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks, Comput Meth Appl Mech Eng, 313, 375-405, (2017)
[43] Burlayenko, V.; Altenbach, H.; Sadowski, T.; Dimitrova, S., Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate, Comput Mater Sci, 116, 11-21, (2016)
[44] Krueger, R., Virtual crack closure technique: history, approach, and applications, Appl Mech Rev, 57, 2, 109-143, (2004)
[45] Paulino, G. H.; Kim, J.-H., A new approach to compute T-stress in functionally graded materials by means of the interaction integral method, Eng Fract Mech, 71, 13-14, 1907-1950, (2004)
[46] Yu, H.; Wu, L.; Guo, L.; Wu, H.; Du, S., An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces, Int J Solids Struct, 47, 16, 2178-2189, (2010) · Zbl 1194.74317
[47] Bremberg, D.; Faleskog, J., A numerical procedure for interaction integrals developed for curved cracks of general shape in 3-D, Int J Solids Struct, 62, 144-157, (2015)
[48] Yu, H.; Sumigawa, T.; Wu, L.; Kitamura, T., Generalized domain-independent interaction integral for solving the stress intensity factors of nonhomogeneous materials, Int J Solids Struct, 67, 151-168, (2015)
[49] Amit, K.; Kim, J.-H., Interaction integrals for thermal fracture of functionally graded materials, Eng Fract Mech, 75, 8, 2542-2565, (2008)
[50] Kim, J. H.; Paulino, G. H., An accurate scheme for mixed‐mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models, Int J Numer Meth Eng, 58, 10, 1457-1497, (2003) · Zbl 1032.74668
[51] Yu, H.; Wu, L.; Li, H., A domain-independent interaction integral for magneto-electro-elastic materials, Int J Solids Struct, 51, 2, 336-351, (2014)
[52] Shen, H.-S., Functionally graded materials: nonlinear analysis of plates and shells, (2016)
[53] Birman, V.; Byrd, L. W., Modeling and analysis of functionally graded materials and structures, Appl Mech Rev, 60, 5, 195-216, (2007)
[54] Gu, Y.; Wang, W.; Zhang, L.; Feng, X., An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields, Eng Fract Mech, 78, 1, 175-190, (2011)
[55] Liu, G.; Tu, Z., An adaptive procedure based on background cells for meshless methods, Comput Meth Appl Mech Eng, 191, 17, 1923-1943, (2002) · Zbl 1098.74738
[56] Hetnarski, R. B.; Eslami, M. R.; Gladwell, G., Thermal stresses: advanced theory and applications, (2009), Springer · Zbl 1165.74004
[57] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, (1968), ASME
[58] Willams, M., On the stress distribution at the base of a stationary crack, J Appl Mech, 24, 109-114, (1957) · Zbl 0077.37902
[59] Eftis, J.; Subramonian, N.; Liebowitz, H., Crack border stress and displacement equations revisited, Eng Fract Mech, 9, 1, 189-210, (1977)
[60] Walters, M. C.; Paulino, G. H.; Dodds Jr, R. H., Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids, J Eng Mech, 132, 1, 1-15, (2006)
[61] Kim, J.-H.; Paulino, G. H., Consistent formulations of the interaction integral method for fracture of functionally graded materials, J Appl Mech, 72, 3, 351-364, (2005) · Zbl 1111.74481
[62] Ayhan, A. O., Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements, Int J Solids Struct, 46, 3-4, 796-810, (2009) · Zbl 1215.74071
[63] Yildirim, B.; Dag, S.; Erdogan, F., Three dimensional fracture analysis of FGM coatings under thermomechanical loading, Int J Fract, 132, 4, 371-397, (2005) · Zbl 1196.74232
[64] Nejati, M.; Paluszny, A.; Zimmerman, R. W., A disk-shaped domain integral method for the computation of stress intensity factors using tetrahedral meshes, Int J Solids Struct, 69, 230-251, (2015)
[65] Erdogan, F.; Wu, B., Crack problems in FGM layers under thermal stresses, J Thermal Stress, 19, 3, 237-265, (1996)
[66] Yildirim, B., An equivalent domain integral method for fracture analysis of functionally graded materials under thermal stresses, J Thermal Stress, 29, 4, 371-397, (2006)
[67] Walters, M. C.; Paulino, G. H.; Dodds, R. H., Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading, Int J Solids Struct, 41, 3, 1081-1118, (2004) · Zbl 1075.74535
[68] Narayanamurti, V.; Dynes, R., Observation of second sound in bismuth, Phys Rev Lett, 28, 22, 1461, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.