zbMATH — the first resource for mathematics

Dirac and Maxwell equations in the Clifford and spin-Clifford bundles. (English) Zbl 0699.53020
The present paper is a direct continuation of a previous one by V. L. Figueiredo and the authors [ibid., 371-395 (1990; see the preceding review)] in which the Dirac and Maxwell equations are investigated in some detail. These equations are considered in generalized form (including the possibility of monopoles) and it is shown that all known presentations of the Maxwell equations in (matrix) Dirac-like “spinor” form can be obtained by choosing particular global idempotents in the indicated Clifford bundles. They also consider the transformation laws of these equations under the Lorentz group and resolve several misunderstandings which have previously appeared in the literature. Finally a factorization of the Maxwell field into two-component spinor fields is exhibited.
Reviewer: J.D.Zund

53C27 Spin and Spin\({}^c\) geometry
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
Full Text: DOI
[1] Aharonov, Y., and Susskind, L. (1967).Physical Review,158, 1237.
[2] Blaine Lawson, Jr., H., and Michelsohn, M. L. (1983).Spin-Geometry, Universidad Federal do Ceará, Brazil.
[3] Bleecker, D. (1971).Gauge Theory and Variational Principles, Addison-Wesley, Reading, Massachusetts. · Zbl 0481.58002
[4] Edmonds, J. D. (1975).Letters al Nuovo Cimento,13, 185.
[5] Faria-Rosa, M. A., and Rodrigues, Jr., W. A. (1989).Modern Physics Letters A,4, 175.
[6] Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1986).Physics Letters B,173, 223.
[7] Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1987).Physics Letters B,188, 511.
[8] Figueiredo, V. L., Oliveira, E. C., and Rodrigues, Jr., W. A. (1990). Covariant, algebraic, and operator spinors,International Journal of Theoretical Physics, this issue. · Zbl 0699.53019
[9] Frescura, F. A. M., and Hiley, B. J. (1980).Foundations of Physics,10, 705.
[10] Gianetto, E. (1985).Lettere al Nuovo Cimento,44, 140, 145.
[11] Graf, W. (1978).Annales de l’Institut Henri Poincaré,XXIV, 85 (1978).
[12] Guèret, P. (1989). Application de l’algebra multivectorielle de Clifford à la construction de spineurs réels de Dirac, Notes of the University of Bari, Italy.
[13] Hestenes, D. (1967).Journal of Mathematical Physics,8, 789.
[14] Hestenes, D. (1971a).American Journal of Physics,39, 1013.
[15] Hestenes, D. (1971b).American Journal of Physics,39, 1028.
[16] Hestenes, D. (1975).Journal of Mathematical Physics,16, 556.
[17] Hestenes, D. (1985). Clifford algebra and the interpretation of quantum mechanics, inClifford Algebras and their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds., D. Reidel, Dordrecht.
[18] Hestenes, D. (1986).Space-Time Algebra, Gordon and Breach, New York.
[19] Landau, L. D., and Lifschitz, E. M. (1971).Relativistic Quantum Theory, Addison-Wesley, Reading, Massachusetts.
[20] Mignani, R., Recami, E., and Baldo, M. (1974).Lettere al Nuovo Cimento,11, 568.
[21] Moses, H. E. (1958).Lettere al Nuovo Cimento (Supplemento),1, 1. · Zbl 0080.42201
[22] Oppenheimer, J. (1931).Physical Review,38, 725. · Zbl 0002.30601
[23] Penrose, R., and Rindler, W. (1984).Spinors and Space-Time, Vols. I and II, Cambridge University Press, Cambridge. · Zbl 0538.53024
[24] Porteous, I. R. (1981).Topological Geometry, 2nd ed., Cambridge University Press, Cambridge. · Zbl 0446.15001
[25] Rodrigues, Jr., W. A., and Faria-Rosa, M. A. (1989).Foundations of Physics,19, 705.
[26] Rodrigues, Jr., W. A., and Figueiredo, V. L. (1989). A new approach to the spinor-structure of space-time, inAtti del VIII Convegno Nazionale di Relativitá Generale e Fisica della Gravitazione, M. Toller, M. Cerdonio, M. Francaviglia, and C. Cianci, eds., World Scientific, Singapore, in press.
[27] Rodrigues, Jr., W. A., and Figueiredo, V. L. (1990). Real spin-Clifford bundle and the spinor structure of space-time,International Journal of Theoretical Physics this issue. · Zbl 0699.53021
[28] Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1988). Magnetic monopoles without string by Kähler-Clifford algebra: A satisfactory formalism, inProceedings of the 6th Simposio Latino Americana de Relatividad y Gravitation, M. Novello, ed., World Scientific, Singapore.
[29] Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1989a). Physico-mathematical approach to generalized monopoles without string,Hadronic Journal, to appear. · Zbl 0704.53083
[30] Rodrigues, Jr., W. A., Maia, Jr., A., Faria-Rosa, M. A., and Recami, E. (1989b).Physics Letters B,220, 195.
[31] Sachs, M. (1982).General Relativity and Matter, D. Reidel, Dordrecht.
[32] Sallhöfer, H. (1986).Zeitschrift für Naturforschung,41a, 468, 1087, 1335, 1431.
[33] Srivastrava, P. P. (1985).Supersymmetry, Superfields and Supergravity, Adam Hilger, Bristol.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.