×

Numerical simulation of semiconductor devices. (English) Zbl 0698.76125

Summary: The theoretical analysis of the mixed and hybrid exponential fitting methods, introduced by the authors [SIAM J. Numer. Anal. 26, No.6, 1342- 1355 (1989; Zbl 0686.65088)], is extended to the case of a non-zero source term. The methods are then studied from the numerical point of view and their upwinding features are analysed.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M99 Basic methods in fluid mechanics

Citations:

Zbl 0686.65088
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brezzi, F.; Marini, L.D.; Pietra, P., Two-dimensional exponential Fitting and applications to drift-diffusion models, SIAM J. numer. anal., 26, (1989) · Zbl 0706.65132
[2] Van Roosbroeck, W.V., Theory of flow of electrons and holes in germanium and other semiconductors, Bell syst. tech. J., 29, 560-607, (1950) · Zbl 1372.35295
[3] Markowich, P.A., The stationary semiconductor device equations, (1986), Spinger Berlin
[4] Mock, M.S., Analysis of mathematical models of semiconductor devices, (1983), Boole Press Dublin · Zbl 0532.65081
[5] Baranger, H.U., Ballistic electrons in a submicron semiconducting structure: A Boltzmann equation approach, ()
[6] Fawcett, W.; Boardman, A.D.; Swain, S., Monte Carlo determination of electron transport properties in gaas, J. phys. chem. solids, 31, (1970)
[7] Niclot, B.; Degond, P.; Poupaud, F., Deterministic particle simulation of the Boltzmann transport equations of semiconductors, J. comp. phys., 78, 313-349, (1988) · Zbl 0662.65126
[8] Brezzi, F.; Capelo, A.C.; Marini, L.D., Singular perturbation problems in semiconductor devices, (), 191-198
[9] Brezzi, F.; Capelo, A.C.; Gastaldi, L., A singular perturbation analysis for reverse-biased diodes, SIAM J. math. anal., 19, 5, (1989), to appear in · Zbl 0693.34015
[10] Jerome, J.W., Consistency of semiconductor modeling: an existence/stability analysis for the stationary Van roosbroeck system, SIAM J. appl. math., 45, 565-590, (1985) · Zbl 0611.35026
[11] Gummel, H.K., A self-consistent iterative scheme for one dimensional steady state transistor calculations, IEEE trans. electron. devices, 11, 455-465, (1964)
[12] Polak, S.J.; Den Heijer, C.; Schilders, W.H.A.; Markowich, P.A., Semiconductor device modelling from the numerical point of view, Internat. J. numer. methods engrg., 24, 763-838, (1987) · Zbl 0618.65125
[13] Scharfetter, D.; Gummel, H., Large-signal analysis of a silicon Read diode oscillator, IEEE trans. electron. devices, 16, 64-77, (1969)
[14] Morton, K.W., Generalised Galerkin methods for steady and unsteady problems, (), 1-32 · Zbl 0543.76118
[15] Allen, D.; Southwell, R., Relaxation methods applied to determining the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Q. J. mech. appl. math., 8, 129-145, (1955) · Zbl 0064.19802
[16] Mock, M.S., Analysis of a discretisation algorithm for stationary continuity equations in semiconductor device models II, Compel, 3, 137-149, (1984) · Zbl 0619.65117
[17] Bank, R.E.; Rose, D.J.; Fichtner, W., Numerical methods for semiconductor device simulation, IEEE trans. electron. devices, 30, 9, 1031-1041, (1983)
[18] Markowich, P.A.; Zlámal, M., Inverse-average-type finite element discretisations of self-adjoint second order elliptic problems, Math. comp., 51, 431-449, (1988)
[19] Douglas, J.; Gamba, I.Martinez; Squeff, M.C.J., Simulation of the transient behavior of a onedimensional semiconductor device, Mat. apl. comput., 5, 103-122, (1986) · Zbl 0625.65123
[20] Brezzi, F.; Marini, L.D.; Pietra, P., Méthodes d’éléments finis mixtes et schéma de scharfetter-gummel, C.R. acad. sci. Paris Série I, 305, 599-604, (1987) · Zbl 0623.65131
[21] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[22] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second order elliptic problems, (), 292-315 · Zbl 0362.65089
[23] Brezzi, F., On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rairo 8-r2, 129-151, (1974) · Zbl 0338.90047
[24] de Veubeke, B.X.Fraeijs, Displacement and equilibrium models in the finite element method, () · Zbl 1065.74625
[25] Arnold, D.N.; Brezzi, F., Mixed and non-conforming finite element methods: implementation, postprocessing and error estimates, M^{2}an, 19, 7-32, (1985) · Zbl 0567.65078
[26] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, submitted to Springer. · Zbl 0788.73002
[27] Baba, K.; Tabata, M., On a conservative upwind finite element scheme for convective diffusion equations, RAIRO anal. numer., 15, 3-25, (1981) · Zbl 0466.76090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.