×

zbMATH — the first resource for mathematics

A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. (English) Zbl 0697.76100
Summary: [For part VII, see the authors, ibid. 65, 85-96 (1987; Zbl 0635.76067).]
Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented.

MSC:
76R50 Diffusion
65Z05 Applications to the sciences
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[2] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. meths. appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[3] Franca, L.P.; Hughes, T.J.R.; Loula, A.F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numer. math., 53, 123-141, (1988) · Zbl 0656.73036
[4] Hughes, T.J.R.; Franca, L.P.; Harari, I.; Mallet, M.; Shakib, F.; Spelce, T.E., Finite element method for high-speed flows: consistent calculation of boundary flux, ()
[5] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[6] Hughes, T.J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Internat. J. numer. meths. fluids, 7, 1261-1275, (1987) · Zbl 0638.76080
[7] Hughes, T.J.R.; Franca, L.P., A new finite element method for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. meths. appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[8] Hughes, T.J.R.; Franca, L.P., A mixed finite element formulation for Reissner-Mindlin plate theory: uniform convergence of all high-order spaces, Comput. meths. appl. mech. engrg., 67, 223-240, (1988) · Zbl 0611.73077
[9] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. meths. appl. mech. engrg., 63, 97-112, (1987) · Zbl 0635.76066
[10] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. meths. appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[11] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advection-diffusion systems, Comput. meths. appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[12] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. meths. appl. mech. engrg., 58, 329-336, (1986) · Zbl 0587.76120
[13] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. meths. appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[14] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (), 251-261
[15] Johnson, C., Numerical solutions of partial differential equations by the finite element method, (1987), Cambridge University Press Cambridge
[16] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. meths. appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[17] Johnson, C.; Szepessy, A., On the convergence of streamline diffusion finite element methods for hyperbolic conservation laws, () · Zbl 0685.65086
[18] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, () · Zbl 0685.65086
[19] Loula, A.F.D.; Franca, L.P.; Hughes, T.J.R.; Miranda, I., Stability, convergence and accuracy of a new finite element method for the circular arch problem, Comput. meths. appl. mech. engrg., 63, 281-303, (1987) · Zbl 0607.73077
[20] Loula, A.F.D.; Hughes, T.J.R.; Franca, L.P.; Miranda, I., Mixed Petrov-Galerkin methods for the Timoshenko beam, Comput. meths. appl. mech. engrg., 63, 133-154, (1987) · Zbl 0607.73076
[21] Loula, A.F.D.; Miranda, I.; Hughes, T.J.R.; Franca, L.P., A successful mixed formulation for axisymmetric shell analysis employing discontinuous stress field of the same order as the displacement field, (), 581-599, Salvador, Brazil
[22] Nävert, U., A finite element method for convection-diffusion problems, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.