×

zbMATH — the first resource for mathematics

Ein Beispiel positiv definiter quadratischer Formen der Dimension 4 mit gleichen Darstellungszahlen. (An example of positive definite quadratic forms of dimension 4 with the same representation numbers). (German) Zbl 0697.10018
The author explicitly writes down two inequivalent quaternary quadratic forms with discriminant 1729, which have the same representation numbers for all integers. Up to discriminant 3000 this is the only example of this type. An interpretation of the interesting phenomenon seems to be open.
Reviewer: M.Peters

MSC:
11E12 Quadratic forms over global rings and fields
11E45 Analytic theory (Epstein zeta functions; relations with automorphic forms and functions)
11E16 General binary quadratic forms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M.Eichler, Einführung in die Theorie algebraischer Zahlen und Funktionen. Basel 1963. · Zbl 0152.19501
[2] E.Hecke, Mathematische Werke. Göttingen 1959.
[3] Y. Kitaoka, Positive definite quadratic forms with the same representation numbers. Arch. Math.28, 495-497 (1977). · Zbl 0361.10019 · doi:10.1007/BF01223956
[4] M. Kneser, Lineare Relationen zwischen Darstellungszahlen quadratischer Formen. Math. Ann.168, 31-39 (1967). · Zbl 0146.05901 · doi:10.1007/BF01361543
[5] H.Minkowski, Gesammelte Abhandlungen II. Leibzig 1911.
[6] B. L. Van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen. Acta Math.96, 265-309 (1956). · Zbl 0072.03601 · doi:10.1007/BF02392364
[7] E. Witt, Eine Identität zwischen Modulformen zweiten Grades. Abh. Math. Sem. Hansischen Univ. (Hamburg)14, 323-337 (1941). · JFM 67.0296.01 · doi:10.1007/BF02940750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.