zbMATH — the first resource for mathematics

Stratified Kisin varieties and potentially Barsotti-Tate deformations. (Variétés de Kisin stratifiées et déformations potentiellement Barsotti-Tate.) (French. English summary) Zbl 1450.11050
Summary: Let \(F\) be a unramified finite extension of \(\mathbb{Q}_p\) and \(\overline{\rho}\) be an irreducible \(\mod p\) two-dimensional representation of the absolute Galois group of \(F\). The aim of this article is the explicit computation of the Kisin variety parameterizing the Breuil-Kisin modules associated to certain families of potentially Barsotti-Tate deformations of \(\overline{\rho}\). We prove that this variety is a finite union of products of \(\mathbb{P}^1\). Moreover, it appears as an explicit closed connected subvariety of \((\mathbb{P}^1)^{[F:\mathbb{Q}_p]}\). We define a stratification of the Kisin variety by locally closed subschemes and explain how the Kisin variety equipped with its stratification may help in determining the ring of Barsotti-Tate deformations of \(\overline{\rho}\).

11F80 Galois representations
11S20 Galois theory
14L15 Group schemes
Full Text: DOI
[1] Breuil, C., Sur un problème de compatibilité local-global modulo p pour GL_2 (avec un appendice de L. Dembélé), J. Reine Angew. Math., 692, 1-76, (2014) · Zbl 1314.11036
[2] Breuil, C.; Mézard, A., Multiplicités modulaires raffinées, Bull. Soc. Math. France, 142, 127-175, (2014) · Zbl 1311.11044
[3] Caruso, X., Représentations galoisiennes p-adiques et (𝜑, 𝜏)-modules, Duke Math. J., 162, 13, 2525-2607, (2013) · Zbl 1294.11207
[4] Caruso, X., Estimation des dimensions de certaines variétés de Kisin, J. Reine Angew. Math., (2015)
[5] Caruso, X.; David, A.; Mézard, A., Calculs d’anneaux de déformations potentiellement Barsotti-Tate, À paraître aux Trans. Amer. Math. Soc · Zbl 1442.11087
[6] Caruso, X.; Liu, T., Quasi semistable representations, Bull. Soc. Math. France, 137, 185-223, (2009) · Zbl 1266.11073
[7] De Jong, A. J., Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci., 82, 5-96, (1995) · Zbl 0864.14009
[8] Emerton, M.; Gee, T., A geometric perspective on the Breuil-Mézard conjecture, J. Math. Jussieu, 13, 183-223, (2014) · Zbl 1318.11061
[9] Fontaine, J.-M., Représentations p-adiques des corps locaux I, The Grothendieck Festschrift, Vol. II, 249-309, (1990), Birkhäuser Boston: Birkhäuser Boston, Boston, MA · Zbl 0743.11066
[10] Fontaine, J.-M., Représentations -adiques potentiellement semi-stables, Astérisque, 223, 321-347, (1994) · Zbl 0873.14020
[11] Hellmann, E., On the structure of some moduli spaces of finite flat group schemes, Mosc. Math. J., 9, 531-561, (2009) · Zbl 1191.14064
[12] Hellmann, E., Connectedness of Kisin’s varieties for GL_2, Adv. Math., 228, 219-240, (2011) · Zbl 1268.11074
[13] Imai, N., Finite flat models of constant group schemes of rank two, Proc. Amer. Math. Soc., 138, 3827-3833, (2010) · Zbl 1255.14037
[14] Imai, N., Ramification and moduli spaces of finite flat models, Ann. Inst. Fourier, 61, 1943-1975, (2011) · Zbl 1279.11112
[15] Kisin, M., Crystalline representations and F-crystals, Progr. Math., 253, 459-496, (2006) · Zbl 1184.11052
[16] Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc., 21, 2, 513-546, (2008) · Zbl 1205.11060
[17] Kisin, M., Moduli of finite flat group schemes and modularity, Ann. of Math. (2), 107, 1085-1180, (2009) · Zbl 1201.14034
[18] Kisin, M., The structure of potentially semi-stable deformation rings, Actes du Congrès International des Mathématiciens, Vol. II, 294-311, (2010) · Zbl 1273.11090
[19] Mazur, B., Deforming Galois representations, Galois Groups Over ℚ (Berkeley CA, 1987), 16, 395-437, (1989), Math. Sci. Res. Inst. Publ. · Zbl 0714.11076
[20] Pappas, G.; Rapoport, M., 𝛷-modules and coefficient spaces, Mosc. Math. J., 9, 625-663, (2009) · Zbl 1194.14032
[21] Wintenberger, J.-P., Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. Éc. Norm. Supér. (4), 16, 59-89, (1983) · Zbl 0516.12015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.