×

zbMATH — the first resource for mathematics

Adaptive motion control of rigid robots: A tutorial. (English) Zbl 0695.93064
Summary: We give a tutorial account of several of the most recent adaptive control results for rigid robot manipulators. Our intent is to lend some perspective to the growing list of adaptive control results for manipulators by providing a unified framework for comparison of those adaptive control algorithms which have been shown to be globally convergent. In most cases we are able to simplify the derivations and proofs of these results as well.

MSC:
93C95 Application models in control theory
93C40 Adaptive control/observation systems
70B15 Kinematics of mechanisms and robots
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amestegui, M.; Ortega, R.; Ibarra, J.M., Adaptive linearizing-decoupling robot control: a comparative study of different parametrizations, ()
[2] An, C.H.; Atkeson, C.G.; Hollerbach, J.M., Estimation of inertial parameters of rigid body links of manipulators, ()
[3] Anderson, B.D.O., ()
[4] Balestrino, A.; De Maria, G.; Sciavicco, L., An adaptive model following control for robotic manipulators, J. dyn. syst. meas. control, 105, 143-151, (1983) · Zbl 0517.93042
[5] Canudas, C.; Astrom, K.J.; Braun, K., Adaptive friction compensation in DC motor drives, ()
[6] Craig, J.J.; Hsu, Pl.; Sastry, S., Adaptive control of mechanical manipulators, ()
[7] Craig, J.J., ()
[8] Desoer, C.; Vidyasagar, M., ()
[9] Hsia, T.C., Adaptive control of robot manipulators: a review, () · Zbl 0810.70020
[10] Hsu, P.; Bodson, M.; Sastry, S.; Paden, B., Adaptive identification and control for manipulators without using joint accelerations, (), 1210-1215
[11] Ioannou, P.; Tsakalis, K., A robust direct adaptive controller, IEEE trans. aut. control, AC-31, 11, 1033-1043, (1986) · Zbl 0628.93040
[12] Kelly, R.; Carelli, R., Input-output analysis of an adaptive computed torque plus compensation control for manipulators, ()
[13] Kelly, R.; Ortega, R.; Carelli, R., Adaptive motion control design of robot manipulators: an input-output approach, () · Zbl 0694.93065
[14] Khosla, P.; Kanade, T., Parameter identification of robot dynamics, ()
[15] Landau, I.; Horowitz, R., Synthesis of adaptive controllers for robot manipulators using a passive-feedback systems approach, () · Zbl 0733.93038
[16] Middleton, R.H.; Goodwin, G.C., Adaptive computed torque control for rigid link manipulators, Syst. control lett., 10, 9-16, (1988) · Zbl 0636.93051
[17] Narendra, K.S.; Lin, Y.; Valavani, L., Stable adaptive control design: part II. proof of stability, IEEE trans. aut. control, AC-25, 440-448, (1980) · Zbl 0467.93049
[18] Ortega, R.; Yu, T., Robustness of direct adaptive controllers: a survey, ()
[19] Praly, L., Oscillatory behavior and fixes in adaptive linear control, a worked example, (1988), CAI Ecole de Mines Rapp. Int
[20] Reed, J.S.; Ioannou, P.A., Instability analysis and robust adaptive control of robotic manipulators, ()
[21] Rohrs, C.; Athans, M.; Valavani, L., Robustness of continuous time adaptive control algorithms in the presence of unmodeled dynamics, IEEE trans. aut. control, AC-30, 9, 881-889, (1985) · Zbl 0571.93042
[22] Sadegh, N.; Horowitz, R., Stability analysis of an adaptive controller for robotic manipulators, ()
[23] Singh, S.N., Adaptive model following control of nonlinear robotic systems, IEEE trans. aut. control, AC-30, 11, 1099-1100, (1985) · Zbl 0569.93052
[24] Slotine, J.-J.E.; Li, W., On the adaptive control of robot manipulators, Int. J. robotics res., 6, 3, 49-59, (1987)
[25] Slotine, J.-J.E.; Li, W., Adaptive robot control: a new perspective, ()
[26] Spong, M.W., Modeling and control of elastic joint manipulators, J. dyn. syst. meas. control, 109, 310-319, (1987) · Zbl 0656.93052
[27] Spong, M.W.; Vidyasagar, M., Robust linear compensator design for nonlinear robotic control, IEEE J. robotics aut., RA-3, 4, 345-351, (1987)
[28] Spong, M.W., Adaptive control of flexible joint robots, Syst. control lett., 13, 15-21, (1988) · Zbl 0691.93028
[29] Spong, M.W.; Ortega, R., On adaptive inverse dynamics control of rigid robots, IEEE trans. aut. control, (1988), to appear
[30] Spong, M.W.; Vidyasagar, M., ()
[31] Sweet, L.M.; Good, M.C., Redefinition of the robot motion control problem: effects of plant dynamics, drive system constrains, and user requirements, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.