Kolyada, V. I. Estimates of rearrangements and imbedding theorems. (English. Russian original) Zbl 0693.46030 Math. USSR, Sb. 64, No. 1, 1-21 (1989); translation from Mat. Sb., Nov. Ser. 136(178), No. 1(5), 3-23 (1988). In the paper the author obtains estimates of rearrangements in terms of integral smoothness. The author uses this estimates to prove embedding theorems. Reviewer: St.Wedrychowicz Cited in 1 ReviewCited in 13 Documents MSC: 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable 26A16 Lipschitz (Hölder) classes 30D55 \(H^p\)-classes (MSC2000) Keywords:\(L^ p\)-modulus of continuity; Orlicz classes \(\phi(L)\); Sobolev and Hardy-Littlewood theorems; estimates of rearrangements in terms of integral smoothness; embedding theorems PDF BibTeX XML Cite \textit{V. I. Kolyada}, Math. USSR, Sb. 64, No. 1, 1--21 (1989; Zbl 0693.46030); translation from Mat. Sb., Nov. Ser. 136(178), No. 1(5), 3--23 (1988) Full Text: DOI