×

zbMATH — the first resource for mathematics

Graph theory-based finite-time synchronization of fractional-order complex dynamical networks. (English) Zbl 1451.93341
Summary: This paper considers the finite-time synchronization problem for a class of fractional-order complex dynamical networks (FOCDNs). By utilizing the properties of fractional calculus and fractional-order comparison principle, we propose a new lemma. Base on the new lemma, some analysis techniques and algebraic graph theory method, some novel criteria are given to ensure finite-time synchronization of FOCDNs, and the upper bound of the setting time for synchronization is estimated. At last, numerical simulations are given to verify the effectiveness of the obtained results.

MSC:
93D40 Finite-time stability
93B70 Networked control
26A33 Fractional derivatives and integrals
05C90 Applications of graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Strogatz, S., Exploring complex network, Nature, 410, 268-276, (2001) · Zbl 1370.90052
[2] Albert, R.; Barabási, A., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97, (2002) · Zbl 1205.82086
[3] Manivannan, R.; Samidurai, R.; Cao, J.; Alsaedi, A.; Alsaadi, F., Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals, Neural Netw., 87, 149-159, (2017)
[4] Cheng, L.; Chen, X.; Qin, J.; Lu, J.; Cao, J., Aperiodically intermittent control for synchronization of switched complex networks with unstable models via matrix ω-measure approach, Nonlinear Dyn., 92, 1091-1102, (2018) · Zbl 1398.34039
[5] Wu, X.; Tang, Y.; Zhang, W., Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66, 195-204, (2016) · Zbl 1335.93115
[6] Wu, X.; Tang, Y.; Zhang, W., Stability analysis of stochastic delayed systems with an application to multi-agent systems, IEEE Trans. Autom. Control, 61, 4143-4149, (2016)
[7] Manivannan, R.; Samidurai, R.; Zhu, Q., Further improved results on stability and dissipativity analysis of static impulsive neural networks with interval time-varying delays, J. Frankl. Inst., 354, 6312-6340, (2017) · Zbl 1373.93273
[8] Xu, W.; Cao, J.; Yu, W.; Lu, J., Leader-following consensus of nonlinear multi-agent systems with jointly connected topology, IET Control Theory Appl., 8, 432-440, (2014)
[9] Wu, X.; Tang, Y.; Cao, J.; Zhang, W., Distributed consensus of stochastic delayed multi-agent systems under asynchronous switching, IEEE Trans. Cybern., 46, 1817-1827, (2016)
[10] Xu, W.; Ho, D.; Li, L.; Cao, J., Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies, IEEE Trans. Cybern., 47, 212-223, (2017)
[11] Gu, Y.; Shao, C.; Fu, X., Complete synchronization and stability of star-shaped complex networks, Chaos Soliton Fract., 28, 480-488, (2006) · Zbl 1083.37025
[12] Wang, Y.; Cao, J., Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems, Nonlinear Anal.: Real World Appl., 14, 842-851, (2013) · Zbl 1254.93013
[13] Li, X., Phase synchronization in complex networks with decayed long-range interactions, Physica D, 223, 242-247, (2006) · Zbl 1112.34028
[14] Guo, W., Lag synchronization of complex network via pinning control, Nonlinear Anal.: Real World Appl., 12, 2579-2585, (2011) · Zbl 1223.93057
[15] Sowmiya, C.; Raja, R.; Cao, J.; Rajchakit, G.; Alsaedi, A., Enhanced robust finite-time passivity for Markovian jumping discrete-time BAM neural networks with leakage delay, Advances in Difference Equations, 2017, (2017), art. no. 318 · Zbl 1444.60078
[16] Chen, X.; Cao, J.; Park, J.; Zong, G.; Qiu, J., Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode, J. Vib. Control, (2018)
[17] Chen, X.; Cao, J.; Park, J.; Huang, T.; Qiu, J., Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode, J. Frankl. Inst., 355, 2892-2911, (2018) · Zbl 1393.93057
[18] Mei, J.; Jiang, M.; Wu, Z.; Wang, X., Periodically intermittent controlling for finite-time synchronization of complex dynamical networks, Nonlinear Dyn., 79, 295-305, (2015) · Zbl 1331.93006
[19] Ma, Q.; Wang, Z.; Lu, J., Finite-time synchronization for complex dynamical networks with time-varying delays, Nonlinear Dyn., 70, 841-848, (2012) · Zbl 1267.34088
[20] Jin, X.; He, Y.; Wang, D., Adaptive finite-time synchronization of a class of pinned and adjustable complex networks, Nonlinear Dyn., 85, 1393-1403, (2016) · Zbl 1349.34206
[21] Yang, X.; Wu, Z.; Cao, J., Finite-time synchronization of complex networks with nonidentical discontinuous nodes, Nonlinear Dyn., 73, 2313-2327, (2013) · Zbl 1281.34100
[22] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and application of fractional differential equations, (2006), Elsevier New York · Zbl 1092.45003
[23] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[24] Li, H.; Zhang, L.; Hu, C.; Jiang, Y.; Teng, Z., Dynamic analysis of a fractional-order single-species model with diffusion, Nonlinear Anal. Model. Control, 22, 303-316, (2017) · Zbl 1416.92138
[25] Velmurugan, G.; Rakkiyappan, R.; Cao, J., Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Netw., 73, 36-46, (2016) · Zbl 1349.34213
[26] Ma, W.; Wu, Y.; Li, C., Pinning synchronization between two general fractional complex dynamical networks with external disturbances, IEEE/CAA J. Autom. Sin., 4, 332-339, (2017)
[27] Wu, H.; Wang, L.; Niu, P.; Wang, Y., Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy, Neurocomputing, 235, 264-273, (2017)
[28] Xiao, J.; Zhong, S.; Li, Y.; Xu, F., Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays, Neurocomputing, 219, 431-439, (2017)
[29] Xu, Q.; Zhuang, S.; Zeng, Y.; Xiao, J., Decentralized adaptive strategies for synchronization of fractional-order complex networks, IEEE/CAA J. Autom. Sin., 4, 543-550, (2017)
[30] Li, H.; Hu, C.; Jiang, Y.; Wang, Z.; Dong, Z., Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks, Chaos Solitons Fract., 92, 142-149, (2016) · Zbl 1372.34086
[31] Zheng, M.; Li, L.; Peng, H.; Xiao, J.; Yang, Y.; Zhao, H., Finite-time projective synchronization of memristor-based delay fractional-order neural networks, Nonlinear Dyn., 89, 2641-2655, (2017) · Zbl 1377.93074
[32] Li, M.; Shuai, Z., Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248, 1-20, (2010) · Zbl 1190.34063
[33] Li, X.; Yang, G., Graph theory-based pinning synchronization of stochastic complex dynamical networks, IEEE Trans. Neural Netw. Learn. Syst., 28, 427-437, (2017)
[34] Li, H.; Jiang, Y.; Wang, Z.; Hu, C., Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomputing, 161, 155-161, (2015)
[35] H, L.; Jiang, Y.; Wang, Z.; Zhang, L.; Teng, Z., Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270, 269-277, (2015) · Zbl 1410.34025
[36] Chen, L.; Wu, R.; Chu, Z.; He, Y., Stability of fractional-order coupled systems with time delay on networks, Nonlinear Dyn., 88, 521-528, (2017) · Zbl 1373.93130
[37] Li, Y.; Chen, Y.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965-1969, (2009) · Zbl 1185.93062
[38] Aguila-Camacho, N.; Duarte-Mermoud, M.; Gallegos, J., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19, 2951-2957, (2014)
[39] Hardy, G.; Littlewood, J.; Polya, G., Inequalities, (1952), Cambridge University Press Cambridge · Zbl 0047.05302
[40] Manivannan, R.; Mahendrakumar, G.; Samidurai, R.; Cao, J.; Alsaedi, A., Exponential stability and extended dissipativity criteria for generalized neural networks with interval time-varying delay signals, J. Frankl. Inst., 354, 4353-4376, (2017) · Zbl 1380.93208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.