zbMATH — the first resource for mathematics

Rapid distortion theory and the ’problems’ of turbulence. (English) Zbl 0692.76054
Summary: The ‘problems’ associated with analysing different kinds of turbulent flow and different methods of solution are classified and discussed with reference to how the turbulent structure in a flow domain depends on the scale and geometry of the domain’s boundary, and on the information provided in the boundary conditions. Rapid distortion theory (RDT) is a method, based on linear analysis, for calculating ‘rapidly changing turbulent’ (RCT) flows under the action of different kinds of distortion, such as large-scale velocity gradients, the effects of bounding surfaces, body forces, etc. Recent developments of the theory are reviewed, including the criteria for its validity, and new solutions allowing for the effects of inhomogeneities and boundaries.
We then consider the contribution of RDT to understanding the fundamental problems of ‘slowly changing turbulent’ (SCT) flows, such as why are similar and persistent features of the local eddy structure found in different kinds of shear flow, and what are the general features of turbulent flows near boundaries. These features, which can be defined in terms of certain statistical quantities and flow patterns in individual flow realizations, are found to correspond to the form of particular solutions of RDT which change slowly over the time of the distortion. The most general features are insensitive to the energy spectrum and to the initial anisotropy of the turbulence. A new RDT analysis of the energy spectra E(k) indicates why, in shear flows at moderate Reynolds number, the turbulence tends to have similar forms of spectra for eddies on a local scale, despite the Reynolds number not being large enough for the existence of a nonlinear cascade and there being no universal forms of spectra for unsheared turbulence; for this situation, the action of shear $$dU_ 1/dx_ 2$$ changes the form of the spectrum, so that, as $$\beta =(t dU_ 1/dx_ 2)$$ increases, over an increasing part of the spectrum defined in terms of the integral scale L by $$\beta^{-1}\gg kL$$, $$E(k)\propto k^{-2}$$, whatever the form of initial spectrum of $$E_ 0(k)$$ (provided $$E(k)=o(k^{-2})$$ for $$kL\gg 1)$$.

MSC:
 76F99 Turbulence 76M99 Basic methods in fluid mechanics
Full Text:
References:
 [1] Liu, Adv. Appl. Mech. 26 pp 183– (1989) [2] DOI: 10.1017/S0022112078002268 · Zbl 0385.76055 · doi:10.1017/S0022112078002268 [3] DOI: 10.1146/annurev.fl.10.010178.000543 · doi:10.1146/annurev.fl.10.010178.000543 [4] Lee, Center for Turbulence Research, Stanford, Rep. 68 pp 221– (1989) [5] DOI: 10.1017/S0022112075001814 · Zbl 0301.76030 · doi:10.1017/S0022112075001814 [6] Landahl, Proc. 2nd Stanford Summer School 8 pp 209– (1990) [7] Landahl, Z. Flugwiss. Weltraumforsch. 8 pp 233– (1984) [8] DOI: 10.1017/S0022112083000944 · doi:10.1017/S0022112083000944 [9] Kida, J. Fluid Mech. 201 pp 411– (1989) [10] Kawai, J. Fluid Mech. 21 pp 169– (1990) [11] DOI: 10.1063/1.862211 · Zbl 0373.76053 · doi:10.1063/1.862211 [12] DOI: 10.1017/S0022112086001192 · doi:10.1017/S0022112086001192 [13] DOI: 10.1063/1.864048 · Zbl 0524.76066 · doi:10.1063/1.864048 [14] DOI: 10.1017/S0022112078000130 · Zbl 0365.76056 · doi:10.1017/S0022112078000130 [15] DOI: 10.1017/S0022112088001363 · Zbl 0642.76002 · doi:10.1017/S0022112088001363 [16] Hunt, Trans. Can. Soc. Mech. Engng 11 pp 21– (1987) [17] DOI: 10.1017/S0022112084000070 · Zbl 0563.76088 · doi:10.1017/S0022112084000070 [18] Hunt, Proc. XIII Biennial Fluid Dynamics Symp., Kortowo, Poland, Fluid Dyn. Trans. 9 pp 121– (1978) [19] DOI: 10.1017/S0022112073000893 · Zbl 0282.76048 · doi:10.1017/S0022112073000893 [20] DOI: 10.1146/annurev.fl.16.010184.002053 · doi:10.1146/annurev.fl.16.010184.002053 [21] Hayakawa, J. Fluid Mech. 206 pp 375– (1989) [22] DOI: 10.1017/S002211207600150X · Zbl 0332.76031 · doi:10.1017/S002211207600150X [23] DOI: 10.1017/S0022112080000250 · Zbl 0458.76040 · doi:10.1017/S0022112080000250 [24] DOI: 10.1256/smsqj.47504 · doi:10.1256/smsqj.47504 [25] Wyngaard, J. Atmos. Sci. 33 pp 1974– (1972) [26] Weber, J. Reine Angew. Math. 68 pp 286– (1868) · ERAM 068.1776cj · doi:10.1515/crll.1868.68.286 [27] DOI: 10.1017/S0022112067002459 · doi:10.1017/S0022112067002459 [28] DOI: 10.1017/S0022112076002036 · Zbl 0338.76007 · doi:10.1017/S0022112076002036 [29] DOI: 10.1017/S0022112078002682 · Zbl 0401.76018 · doi:10.1017/S0022112078002682 [30] DOI: 10.1017/S0022112088002228 · Zbl 0643.76067 · doi:10.1017/S0022112088002228 [31] DOI: 10.1017/S0022112085000027 · doi:10.1017/S0022112085000027 [32] DOI: 10.1017/S0022112083002426 · doi:10.1017/S0022112083002426 [33] DOI: 10.1017/S0022112089000029 · Zbl 0662.76074 · doi:10.1017/S0022112089000029 [34] DOI: 10.1017/S0022112068000947 · doi:10.1017/S0022112068000947 [35] Dussage, Proc. Symp. Turbulent Shear Flows, Davis 100 pp 2.33– (1981) [36] DOI: 10.1017/S0022112080000092 · Zbl 0427.76053 · doi:10.1017/S0022112080000092 [37] DOI: 10.1017/S0022112080001061 · Zbl 0452.76041 · doi:10.1017/S0022112080001061 [38] Durbin, Q. J. Mech. Appl. Maths 34 pp 489– (1981) [39] DOI: 10.1017/S0022112070000514 · Zbl 0193.27104 · doi:10.1017/S0022112070000514 [40] DOI: 10.1016/0167-7977(89)90004-X · doi:10.1016/0167-7977(89)90004-X [41] DOI: 10.1017/S0022112061000883 · Zbl 0127.42602 · doi:10.1017/S0022112061000883 [42] DOI: 10.1017/S0022112077000792 · doi:10.1017/S0022112077000792 [43] Tennekes, Weather 43 pp 165– (1988) · doi:10.1002/j.1477-8696.1988.tb03898.x [44] Taylor, Q. J. Mech. Appl. Maths 2 pp 1– (1949) [45] DOI: 10.1017/S0022112078000294 · Zbl 0371.76047 · doi:10.1017/S0022112078000294 [46] Deissler, J. Math. Phys. 47 pp 320– (1968) · Zbl 0172.26904 · doi:10.1002/sapm1968471310 [47] Davidson, Prog. Astronaut. Aeronaut. 111 pp 400– (1968) [48] DOI: 10.1017/S0022112068000613 · doi:10.1017/S0022112068000613 [49] Craya, P. S. T. MinistĂ¨re de l’Air 345 pp 81– (1958) [50] DOI: 10.1017/S0022112070000538 · doi:10.1017/S0022112070000538 [51] DOI: 10.1017/S0022112085001483 · doi:10.1017/S0022112085001483 [52] DOI: 10.1017/S002211208600318X · Zbl 0602.76063 · doi:10.1017/S002211208600318X [53] DOI: 10.1146/annurev.fl.19.010187.002531 · doi:10.1146/annurev.fl.19.010187.002531 [54] DOI: 10.1063/1.1762284 · doi:10.1063/1.1762284 [55] Cambon, J. Fluid Mech. 202 pp 295– (1989) [56] DOI: 10.1017/S0022112086002306 · doi:10.1017/S0022112086002306 [57] DOI: 10.1017/S0022112087000569 · doi:10.1017/S0022112087000569 [58] DOI: 10.1256/smsqj.45105 · doi:10.1256/smsqj.45105 [59] Rogers, Phys. Fluids 51 pp 220– (1990) [60] Rogallo, NASA Tech. Memo. 51 pp 220– (1981) [61] Rodi, Proc. 3rd Intl Symp. on Refined Flow Modelling and Turbulence Measurements, Tokyo, July 51 pp 220– (1988) [62] Phillips, Proc. Camb. Phil. Soc. 51 pp 220– (1955) [63] DOI: 10.1017/S0022112059000192 · Zbl 0092.19902 · doi:10.1017/S0022112059000192 [64] DOI: 10.1017/S0022112079000628 · doi:10.1017/S0022112079000628 [65] DOI: 10.1017/S0022112067001089 · doi:10.1017/S0022112067001089 [66] Batchelor, Phil. Trans. R. Soc. Lond. 248 pp 369– (1956) [67] Batchelor, Q. J. Mech. Appl. Maths 7 pp 83– (1954) [68] DOI: 10.1016/0167-6105(88)90006-2 · doi:10.1016/0167-6105(88)90006-2 [69] DOI: 10.1017/S0022112082001062 · doi:10.1017/S0022112082001062 [70] DOI: 10.1017/S0022112088003246 · Zbl 0661.76114 · doi:10.1017/S0022112088003246 [71] DOI: 10.1017/S0022112088001442 · Zbl 0642.76070 · doi:10.1017/S0022112088001442 [72] DOI: 10.1017/S0022112067002307 · doi:10.1017/S0022112067002307 [73] DOI: 10.1017/S0022112082002493 · Zbl 0504.76061 · doi:10.1017/S0022112082002493 [74] DOI: 10.1256/smsqj.46817 · doi:10.1256/smsqj.46817 [75] Lumley, Adv. Appl. Mech. 18 pp 126– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.