×

zbMATH — the first resource for mathematics

On the derivation of Hawking radiation associated with the formation of a black hole. (English) Zbl 0692.53040
Summary: We show how in gravitational collapse the Hawking radiation at large times is precisely related to a scaling limit on the sphere where the star radius crosses the Schwarzschild radius (as long as the back reaction of the radiation on the metric is neglected). For a free quantum field it can be exactly evaluated and the result agrees with Hawking’s prediction. For a realistic quantum field theory no evaluation based on general principles seems possible. The outcoming radiation depends on the field theoretical model.

MSC:
53B50 Applications of local differential geometry to the sciences
83C75 Space-time singularities, cosmic censorship, etc.
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time, Cambridge: Cambridge University Press 1980 · Zbl 0265.53054
[2] Bekenstein, J.D.: Phys. Rev.D7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[3] Hawking, S.W.: Commun. Math. Phys.43, 199 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[4] Bisognano, J.J. Wichmann, E.H.: J. Math. Phys.17, 303 (1976) · doi:10.1063/1.522898
[5] Sewell, G.L.: Phys. Lett.79A, 23 (1980)
[6] Unruh, W.G.: Phys. Rev.D14, 870 (1976) · doi:10.1103/PhysRevD.14.870
[7] Fulling, S.A.: Phys. Rev.D7, 2850 (1973) · doi:10.1103/PhysRevD.7.2850
[8] Haag, R., Narnhofer, H., Stein, U.: Commun. Math. Phys.94, 219 (1984) · doi:10.1007/BF01209302
[9] Fredenhagen, K., Haag, R.: Commun. Math. Phys.108, 91 (1987) · Zbl 0626.46063 · doi:10.1007/BF01210704
[10] Adler, S., Liebermann, J., Ng, Y.J.: Ann. Phys.106, 279 (1978); Adler, S., Liebermann, J.: Ann. Phys.113, 294 (1977)
[11] Wald, R.M.: Commun. Math. Phys.54, 1 (1977); Phys. Rev.D17, 1477 (1978) · Zbl 1173.81328 · doi:10.1007/BF01609833
[12] Fulling, S.A., Sweeny, M., Wald, R.M.: Commun. Math. Phys.63, 257 (1981) · Zbl 0401.35065 · doi:10.1007/BF01196934
[13] Fulling, S.A., Narcowich, F.J., Wald, R.M.: Ann. Phys. (N.Y.)136, 243 (1981) · Zbl 0495.35054 · doi:10.1016/0003-4916(81)90098-1
[14] Kay, B.S., Wald, R.M.: Proceedings of the XV th international conference on differential geometric methods in theoretical physics (Clausthal 1986) Doebner, H.D., Henning, J.D. (eds.). Singapore: World Scientific 1987; Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on spacetime with a bifurcate killing horizon (Preprint 1988)
[15] Bernard, D.: Phys. Rev.D33, 3581 (1986) · doi:10.1103/PhysRevD.33.3581
[16] Hartle, J.R., Hawking, S.W.: Phys. Rev.D13, 2188 (1976) · doi:10.1103/PhysRevD.13.2188
[17] Gibbons, E.W., Hawking, S.W.: Phys. Rev.D15, 2738 (1977) · doi:10.1103/PhysRevD.15.2738
[18] Dimock, J., Kay, B.S.: Ann. Phys. (N.Y.)175, 366 (1987) · Zbl 0628.53080 · doi:10.1016/0003-4916(87)90214-4
[19] De Alfaro, V., Regge, T.: Potential scattering. Amsterdam: North-Holland 1965 · Zbl 0141.23202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.