×

zbMATH — the first resource for mathematics

Heteroscedasticity testing for regression models: a dimension reduction-based model adaptive approach. (English) Zbl 06918228
Summary: Heteroscedasticity testing is of importance in regression analysis. Existing local smoothing tests suffer severely from curse of dimensionality even when the number of covariates is moderate because of use of nonparametric estimation. A dimension reduction-based model adaptive test is proposed which behaves like a local smoothing test as if the number of covariates was equal to the number of their linear combinations in the mean regression function, in particular, equal to 1 when the mean function contains a single index. The test statistic is asymptotically normal under the null hypothesis such that critical values are easily determined. The finite sample performances of the test are examined by simulations and a real data analysis.

MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Collomb, G and; Härdle, W., Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations, Stochastic Process. Appl., 23, 77-89, (1986) · Zbl 0612.62127
[2] Cook, R. D., Regression graphics: ideas for studying regressions through graphics, (1998), Wiley New York · Zbl 0903.62001
[3] Cook, R. D; Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10, (1983) · Zbl 0502.62063
[4] Cook, R. D.; Weisberg, S., Discussion of sliced inverse regression for dimension reduction, by K.C. Li, J. Amer. Statist. Assoc., 86, 316-342, (1991)
[5] Dette, H., A consistent test for heteroscedasticity in nonparametric regression based on the kernel method, J. Statist. Plann. Inference, 103, 311-329, (2002) · Zbl 0988.62024
[6] Dette, H.; Munk, A., Testing heteroscedasticity in nonparametric regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 60, 693-708, (1998) · Zbl 0909.62035
[7] Dette, H.; Neumeyer, N.; Van Keilegom, I., A new test for the parametric form of the variance function in nonparametric regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 5, 903-917, (2007)
[8] Fan, Y.; Li, Q., Consistent model specication tests: omitted variables and semiparametric functional forms, Econometrica, 64, 865-890, (1996) · Zbl 0854.62038
[9] Guo, X.; Wang, T.; Zhu, L., Model checking for parametric single-index models: a dimension reduction model-adaptive approach, J. R. Stat. Soc. Ser. B Stat. Methodol., (2015), in press
[10] Hall, P.; Marron, J. S., On variance estimation in nonparametric regression, Biometrika, 77, 415-419, (1990) · Zbl 0711.62035
[11] Li, K. C., Sliced inverse regression for dimension reduction, J. Amer. Statist. Assoc., 86, 316-327, (1991) · Zbl 0742.62044
[12] Li, B.; Wen, S. Q.; Zhu, L. X., On a projective resampling method for dimension reduction with multivariate responses, J. Amer. Statist. Assoc., 103, 1177-1186, (2008) · Zbl 1205.62067
[13] Liero, H., Testing homoscedasticity in nonparametric regression, J. Nonparametr. Stat., 15, 1, 31-51, (2003) · Zbl 1019.62036
[14] Lin, J. G.; Qu, X. Y., A consistent test for heteroscedasticity in semi-parametric regression with nonparametric variance function based on the kernel method, Statistics, 46, 565-576, (2012) · Zbl 1316.62057
[15] Naik, D. N.; Khattree, R., Revisiting olympic track records: some practical considerations in the principal component analysis, Amer. Statist., 50, 140-144, (1996)
[16] Powell, J. L.; Stock, J. H.; Stoker, T. M., Semiparametric estimation of index coefficients, Econometrica, 57, 1403-1430, (1989) · Zbl 0683.62070
[17] Serfling, R. J., Approximation theorems of mathematical statistics, (1980), John Wiley New York · Zbl 0538.62002
[18] Simonoff, J. S.; Tsai, C. L., Improved tests for nonconstant variance in regression based on the modified profile likelihood, J. Appl. Stat., 43, 357-370, (1994) · Zbl 0825.62585
[19] Stute, W.; Zhu, L. X., Nonparametric checks for single-index models, Ann. Statist., 33, 1048-1083, (2005) · Zbl 1080.62023
[20] Tsai, C. L., Score test for the first-order autoregressive model with heteroscedasticity, Biometrika, 73, 455-460, (1986)
[21] Xia, Y. C.; Tong, H.; Li, W. K.; Zhu, L. X., An adaptive estimation of dimension reduction space, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 363-410, (2002) · Zbl 1091.62028
[22] Xia, Q.; Xu, W.; Zhu, L., Consistently determining the number of factors in multivariate volatility modelling, Statist. Sinica, 25, 1025-1044, (2015) · Zbl 1415.62067
[23] Zheng, J. X., A consistent test of functional form via nonparametric estimation techniques, J. Econometrics, 75, 263-289, (1996) · Zbl 0865.62030
[24] Zheng, J. X., Testing heteroscedasticity in nonlinear and nonparametric regressions, Canad. J. Statist., 37, 282-300, (2009) · Zbl 1176.62046
[25] Zhu, L. X., Model checking of dimension-reduction type for regression, Statist. Sinica, 13, 283-296, (2003) · Zbl 1015.62042
[26] Zhu, L. X.; Fang, K. T., Asymptotics for the kernel estimates of sliced inverse regression, Ann. Statist., 24, 1053-1067, (1996)
[27] Zhu, L. X.; Fujikoshi, Y.; Naito, K., Heteroscedasticity test for regression models, Sci. China Ser. A, 44, 1237-1252, (2001)
[28] Zhu, X. H.; Guo, X.; Lin, L.; Zhu, L. X., Heteroscedasticity checks for single index models, J. Multivariate Anal., 136, 41-55, (2015) · Zbl 1308.62088
[29] Zhu, X.H., Guo, X., Zhu, L.X., An adaptive-to-model test for partially parametric single-index models, 2015b. arXiv preprint arXiv:1510.07144. · Zbl 06737706
[30] Zhu, L. X.; Ng, K. W., Asymptotics for sliced inverse regression, Statist. Sinica, 5, 727-736, (1995) · Zbl 0824.62036
[31] Zhu, L. P.; Zhu, L. X.; Ferré, L.; Wang, T., Sufficient dimension reduction through discretization-expectation estimation, Biometrika, 97, 295-304, (2010) · Zbl 1205.62048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.