×

zbMATH — the first resource for mathematics

Value functions, domination cones and proper efficiency in multicriteria optimization. (English) Zbl 0691.90081
The author discusses domination cones in multicriteria optimization. Relations between value functions and domination cones and between efficiency and optimality are analyzed. It is shown that such cones must be convex and strictly supported and that often they are closed. It is argued that in most applications “potential” optimal solutions are equivalent to properly efficient points and that these solutions can be produced by maximizing with respect to a class of concave functions.
Reviewer: A.Shapiro

MSC:
90C31 Sensitivity, stability, parametric optimization
90B50 Management decision making, including multiple objectives
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Arrow, E. Barankin and D. Blackwell, ”Admissible points of convex sets,” in: H.W. Kuhn and A.W. Tucker, eds.,Contribution to the Theory of Games (Princeton University Press, Princeton, NJ, 1953) pp. 87–91. · Zbl 0050.14203
[2] A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in Nonlinear Programming, a Feasible Directions Approach (Wiley, New York, 1981). · Zbl 0454.90043
[3] H. Benson, ”An improved definition of proper efficiency for vector maximization with respect to cones,”Journal of Mathematical Analysis and Applications 71 (1979) 232–241. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[4] G. Bitran and T. Magnanti, ”The structure of admissible points with respect to cone dominance,”Journal of Optimization Theory and Applications 29 (1979) 573–614. · Zbl 0389.52021 · doi:10.1007/BF00934453
[5] J. Borwein, ”Proper efficient points for maximization with respect to cones,”SIAM Journal on Control and Optimization 15 (1977) 57–63. · Zbl 0369.90096 · doi:10.1137/0315004
[6] Y. Censor, ”Pareto optimality in multiobjective problems,”Applied Mathematics and Optimization 4 (1977) 41–59. · Zbl 0367.90097 · doi:10.1007/BF01442131
[7] P.C. Fishburn,Utility Theory for Decision Making (Wiley, New York, 1970). · Zbl 0213.46202
[8] D. Gale,The Theory of Linear Economic Models (McGraw-Hill, New York, 1960). · Zbl 0114.12203
[9] W.B. Gearhart, ”Compromise solutions and estimation of the noninferior set,”Journal of Optimization Theory and Applications 28 (1979) 29–47. · Zbl 0422.90074 · doi:10.1007/BF00933599
[10] W.B. Gearhart, ”Characterization of properly efficient solutions by generalized scalarization methods,”Journal of Optimization Theory and Applications 41 (1983) 491–502. · Zbl 0502.90077 · doi:10.1007/BF00935368
[11] A. Geoffrion, ”Proper efficiency and the theory of vector maximization,”Journal of Mathematical Analysis and Applications 22 (1968) 618–630. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[12] I.V. Girsanov, ”Lectures on mathematical theory of extremum problems,” in:Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1972). · Zbl 0234.49016
[13] R. Hartley, ”On cone-efficiency, cone-convexity, and cone-compactness,”SIAM Journal on Applied Mathematics 34 (1978) 211–222. · Zbl 0379.90005 · doi:10.1137/0134018
[14] M. Henig, ”Proper efficiency with respect to cones,”Journal of Optimization Theory and Applications 36 (1982) 387–407. · Zbl 0452.90073 · doi:10.1007/BF00934353
[15] M. Henig, ”A cone separation theorem,”Journal of Optimization Theory and Applications 36 (1982) 451–455. · Zbl 0452.90072 · doi:10.1007/BF00934357
[16] H. Isermann, ”Proper efficiency and the linear vector maximum problem,”Operations Research 22 (1974) 189–191. · Zbl 0274.90024 · doi:10.1287/opre.22.1.189
[17] J. Jahn, ”A characterization of properly minimal elements of a set,”SIAM Journal on Control and Optimization 23 (1985) 649–656. · Zbl 0579.90086 · doi:10.1137/0323041
[18] S. Karlin, ”Mathematical methods and theory in games,” in:Programming and Economics, Vol. 1 (Addison-Wesley, Reading, MA, 1959). · Zbl 0097.34102
[19] D. Krantz, D. Luce, D. Suppes and D. Tversky,Foundation of Measurements, Vol. 1 (Academic Press, New York, 1971). · Zbl 0232.02040
[20] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming,” in: J. Neyman, ed.,Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, CA, 1950) pp. 481–492.
[21] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[22] R. Soland, ”Multicriteria optimization: A general characterization of efficient solution,”Decision Sciences 10 (1970) 26–38. · doi:10.1111/j.1540-5915.1979.tb00004.x
[23] D.J. White, ”Optimaltiy and efficiency I,”European Journal of Operational Research 4 (1980) 346–356. · Zbl 0433.90001 · doi:10.1016/0377-2217(80)90146-0
[24] P.L. Yu, ”Cone convexity, cone extreme points, and nondominated solutions in decision problems with multi objectives,”Journal of Optimization Theory and Applications 14 (1974) 319–377. · Zbl 0268.90057 · doi:10.1007/BF00932614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.