×

zbMATH — the first resource for mathematics

Pseudo-spectral solution of nonlinear Schrödinger equations. (English) Zbl 0691.65090
This paper compares four discretization methods for solving the generalized nonlinear Schrödinger equation \(iu_ t+u_{xx}+q_ c| u|^ 2u+q_ q| u|^ 4u+iq_ m| u|^ 2_ xu+iq_ u| u|^ 2u_ x=0\) where \(q_ c\), \(q_ q\), \(q_ m\) and \(q_ u\) are real parameters. An initial value problem is considered so that \(u(x,0)=u_ 0(x)\) is specified. The solution may be represented in a Fourier series where the coefficients depend on time and the methods differ on their formalism connecting the time variable with the space function discretization at n collocation points. Numerical examples are given.
Reviewer: B.Burrows

MSC:
65Z05 Applications to the sciences
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Johnson, R.S., (), 131
[2] Kakutani, T.; Michihiro, K., J. phys. soc. Japan, 52, 4129, (1983)
[3] Calogero, F.; Eckhaus, W., Inverse probl., 3, 229, (1987)
[4] Hasimoto, H.; Ono, H., J. phys. soc. Japan, 33, 805, (1972)
[5] Strauss, W.A., The nonlinear Schrödinger equation, (), 452
[6] Lamb, G.L., Elements of soliton theory, (1980), Wiley Toronto · Zbl 0445.35001
[7] Kaup, D.; Newell, A.C., J. math. phys., 19, 798, (1978)
[8] Tanaka, M., J. phys. soc. Japan, 51, 2686, (1982)
[9] Cowan, S.; Enns, R.H.; Rangnekar, S.S.; Sanghera, S.S., Canad. J. phys., 64, 311, (1986)
[10] Kundu, A., Physica D, 25, 399, (1987)
[11] Calogero, F.; Eckhaus, W., Inverse probl., 3, L27, (1987)
[12] Pathria, D.; Morris, J.Ll., Exact solutions for a generalized nonlinear Schrödinger equation, Phys. scr., 39, 673, (1989)
[13] Sanz-Serna, J.M.; Manoranjan, V.S., J. comput. phys., 52, 273, (1983)
[14] Delfour, M.; Fortin, M.; Payre, G., J. comput. phys., 44, 277, (1981)
[15] Sanz-Serna, J.M.; Verwer, J.G., IMA J. numer. anal., 6, 25, (1986)
[16] Tourigny, Y.; Morris, L.Ll., J. comput. phys., 76, 103, (1988)
[17] Cooley, J.W.; Tukey, J.W., Math. comput., 19, 297, (1965)
[18] Tadmor, E., SIAM J. numer. anal., 23, 1, (1986)
[19] Strang, G., SIAM J. numer. anal., 5, 506, (1968)
[20] Hardin, R.H.; Tappert, F.D., SIAM rev. chron., 15, 423, (1973)
[21] Taha, T.R.; Ablowitz, M.J., J. comput. phys., 55, 192, (1984)
[22] Weideman, J.A.C.; Herbst, B.M., SIAM J. numer. anal., 23, 485, (1986)
[23] Cloot, A.; Herbst, B.M.; Weideman, J.A.C., (), 637
[24] Herbst, B.M.; Mitchell, A.R.; Weideman, J.A.C., J. comput. phys., 60, 263, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.