×

A B-spline basis for \(C^1\) quadratic splines on triangulations with a 10-split. (English) Zbl 1524.65066

Summary: The paper considers the macro-element splitting technique that refines every triangle of the initial triangulation into ten smaller triangles. The resulting refinement is an extension of the well-known Powell-Sabin 6-split and enables a construction of polynomial \(C^1\) splines of degree two interpolating first order Hermite data at the vertices of the initial triangulation. A particular construction, called a balanced 10-split, is presented that allows a numerically stable B-spline representation of such splines. This amounts to, firstly, defining locally supported basis functions for the macro-element space that form a convex partition of unity, and, secondly, expressing the coefficients of the spline represented in this basis by the means of spline values and derivatives at the vertices of the initial triangulation.

MSC:

65D07 Numerical computation using splines
41A15 Spline approximation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Powell, M. J.D.; Sabin, M. A., Piecewise quadratic approximations on triangles, ACM Trans. Math. Software, 3, 316-325, (1977) · Zbl 0375.41010
[2] R.W. Clough, J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending, in: Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1965, pp. 515-545.; R.W. Clough, J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending, in: Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1965, pp. 515-545.
[3] Sbibih, D.; Serghini, A.; Tijini, A., \(C^1\) quadratic and \(C^2\) quartic macro-elements on a modified morgan-Scott triangulation, Mediterr. J. Math., 10, 1273-1292, (2013) · Zbl 1365.65262
[4] Dierckx, P., On calculating normalized powell-sabin B-splines, Comput. Aided Geom. Design, 15, 61-78, (1997) · Zbl 0894.68152
[5] Cohen, E.; Lyche, T.; Riesenfeld, R. F., A B-spline-like basis for the powell-sabin 12-split based on simplex splines, Math. Comp., 82, 1667-1707, (2013) · Zbl 1278.41005
[6] Schumaker, L. L., Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mountain J. Math., 14, 251-264, (1984) · Zbl 0601.41034
[7] Wang, T., A \(C^2\)-quintic spline interpolation scheme on triangulation, Comput. Aided Geom. Design, 9, 379-386, (1992) · Zbl 0770.65005
[8] Cheng, S.-W.; Dey, T. K.; Shewchuk, J., Delaunay mesh generation, (2012), Chapman & Hall/CRC
[9] Farin, G., Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, 3, 83-127, (1986)
[10] Speleers, H., A normalized basis for reduced clough-tocher splines, Comput. Aided Geom. Design, 27, 700-712, (2010) · Zbl 1210.65026
[11] Speleers, H., Construction of normalized B-splines for a family of smooth spline spaces over powell-sabin triangulations, Constr. Approx., 37, 41-72, (2013) · Zbl 1264.41014
[12] Speleers, H., Multivariate normalized powell-sabin B-splines and quasi-interpolants, Comput. Aided Geom. Design, 30, 2-19, (2013) · Zbl 1255.65038
[13] Lamnii, M.; Mraoui, H.; Tijini, A.; Zidna, A., A normalized basis for \(C 1\) cubic super spline space on powell-sabin triangulation, Math. Comput. Simulation, 99, 108-124, (2014)
[14] Lamnii, A.; Lamnii, M.; Mraoui, H., A normalized basis for condensed \(C 1\) powell-sabin-12 splines, Comput. Aided Geom. Design, 34, 5-20, (2015) · Zbl 1375.65018
[15] Speleers, H., A new B-spline representation for cubic splines over powell-sabin triangulations, Comput. Aided Geom. Design, 37, 42-56, (2015)
[16] Grošelj, J.; Krajnc, M., \(C 1\) cubic splines on powell-sabin triangulations, Appl. Math. Comput., 272, 114-126, (2016)
[17] Grošelj, J.; Krajnc, M., Quartic splines on powel-sabin triangulations, Comput. Aided Geom. Design, 49, 1-16, (2016) · Zbl 1366.65013
[18] Klee, V.; Laskowski, M. C., Finding the smallest triangles containing a given convex polygon, J. Algorithms, 6, 359-375, (1985) · Zbl 0577.52003
[19] O’Rourke, J.; Aggarwal, A.; Maddila, S.; Baldwin, M., An optimal algorithm for finding minimal enclosing triangles, J. Algorithms, 7, 258-269, (1986) · Zbl 0606.68038
[20] Manni, C.; Sablonnière, P., Quadratic spline quasi-interpolants on powell-sabin partitions, Adv. Comput. Math., 26, 283-304, (2007) · Zbl 1116.65008
[21] Sbibih, D.; Serghini, A.; Tijini, A., Polar forms and quadratic spline quasi-interpolants on powell-sabin partitions, Appl. Numer. Math., 59, 938-958, (2009) · Zbl 1167.65005
[22] Maes, J.; Bultheel, A., Stable multiresolution analysis on triangles for surface compression, Electron. Trans. Numer. Anal., 25, 224-258, (2006) · Zbl 1112.65135
[23] Windmolders, J.; Dierckx, P., Subdivision of uniform powell-sabin splines, Comput. Aided Geom. Design, 16, 301-315, (1999) · Zbl 0916.68153
[24] Vanraes, E.; Windmolders, J.; Bultheel, A.; Dierckx, P., Automatic construction of control triangles for subdivided powel-sabin splines, Comput. Aided Geom. Design, 21, 671-682, (2004) · Zbl 1069.41508
[25] Speleers, H.; Dierckx, P.; Vandewalle, S., Numerical solution of partial differential equations with powell-sabin splines, J. Comput. Appl. Math., 189, 643-659, (2006) · Zbl 1086.65114
[26] Speleers, H.; Manni, C.; Pelosi, F.; Sampoli, M. L., Isogeometric analysis with powell-sabin splines for advection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 221-222, 132-148, (2012) · Zbl 1253.65026
[27] Lai, M. J.; Schumaker, L. L., Spline functions on triangulations, (2007), Cambridge University Press · Zbl 1185.41001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.