# zbMATH — the first resource for mathematics

Groupe de Picard des variétés de modules de fibrés semi-stable sur les courbes algébriques. (Picard groups of moduli varieties of semi- stable bundles on algebraic curves). (French) Zbl 0689.14012
Let X be a smooth projective curve of genus $$g\geq 2$$ over $${\mathbb{C}}$$. Let U(r,d) (resp. $$U_ s(r,d))$$ be the moduli space of algebraic semistable vector bundles (resp. the open subset corresponding to the stable bundles) of rank $$r\geq 2$$ and degree d over X. It is known that $$U(r,d)$$ is a normal, irreducible, projective variety. If $$gcd(g,r)\neq 1$$ and one excludes also the case $$g=r=2$$, d even then $$U(r,d)$$ is not smooth, $$Sing(U(r,d))=U(r,d)\setminus U_ s(r,d)$$ and $$co\dim_{U(r,d)}U(r,d)\setminus U_ s(r,d)\geq 2$$. For $$L\in Pic(X)$$, $$\deg (L)=d$$ let denote by U(r,L) (resp. $$U_ s(r,L))$$ the closed subvariety of $$U(r,d)$$ (resp. $$U_ s(r,d))$$ corresponding to the vector bundles with determinant isomorphic to L. The aim of this paper is to give a complete description of $$Pic(U(r,d))$$ and $$Pic(U(r,L))$$ when $$gcd(g,r)\neq 1$$ and $$(g,r)\neq (2,2)$$, d even.
The first result is that even they are singular, $$U(r,d)$$ and $$U(r,L)$$ are locally factorial. Let now $$\gcd (r,d)=n$$ and let $${\mathcal F}$$ be a vector bundle on X such that $$\deg({\mathcal F})=(-d+r(g-1))/n$$ and $$rk({\mathcal F})=r/n$$. Then $$\chi({\mathcal E}\otimes {\mathcal F})=0$$ for all vector bundles $${\mathcal E}$$ on X of rank r and degree d. One can show that $${\mathcal F}$$ above can be chosen such that there exists $${\mathcal E}\in U_ s(r,d)$$ with $$H^ 0(X,{\mathcal E}\otimes {\mathcal F})=H^ 1(X,{\mathcal E}\otimes {\mathcal F})=0$$. Then for such an $${\mathcal F}$$ denote by $$\Theta^ s_{{\mathcal F}}$$ (respectively $$\Theta^ s_{{\mathcal F},L})$$ the set of points of $$U_ s(r,d)$$ (resp. $$U_ s(r,L))$$ which correspond to stable bundles $${\mathcal E}$$ with $$H^ 0(X,{\mathcal E}\otimes {\mathcal F})\neq 0$$. These are showed to be hypersurfaces in $$U_ s(r,d)$$ respectively in $$U_ s(r,L)$$. Their closure in $$U(r,d)$$ (respectively $$U(r,L)$$) are denoted by $$\Theta_{{\mathcal F}}$$ (resp. $$\Theta_{{\mathcal F},L})$$ and called theta divisors.
The line bundle $${\mathcal O}(\Theta_{{\mathcal F},L})$$ is independent of the choice of $${\mathcal F}$$ and $$Pic(U(r,L))$$ is isomorphic to $${\mathbb{Z}}$$ having $${\mathcal O}(\Theta_{{\mathcal F},L})$$ as generator. Let $$I^{(d)}$$ be the Jacobian of the line bundles of degree d on X. Then, through the canonical morphism $$\det: U(r,d)\to I^{(d)},$$ $$Pic(I^{(d)})$$ is seen as a subgroup of Pic(U(r,d)) and one has the isomorphism $$Pic(U(r,d))\cong Pic(I^{(d)})\oplus {\mathbb{Z}}{\mathcal O}(\Theta_{{\mathcal F}})$$. Here $${\mathcal O}(\Theta_{{\mathcal F}})$$ is dependent on the choice of $${\mathcal F}:$$ $${\mathcal O}(\Theta_{{\mathcal F}'})\cong {\mathcal O}(\Theta_{{\mathcal F}})\otimes \det^*(\det {\mathcal F}'\otimes (\det {\mathcal F})^{-1}).$$
The paper also contains a complete description of the dualizing sheaves of $$U(r,L)$$ and $$U(r,d)$$ and a proof of the nonexistence of Poincaré bundles on open subsets of the moduli space $$M_ s({\mathbb{P}}_ 2({\mathbb{C}}),r,c_ 1,c_ 2)$$ in case r, $$c_ 1$$ and $$\chi$$ are not prime to each other.
Reviewer: Sorin Popescu

##### MSC:
 14C22 Picard groups 14H10 Families, moduli of curves (algebraic) 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text:
##### References:
 [1] Drezet, J.-M.: Groupe de Picard des variétés de modules de faisceaux semi-stables sur $$\mathbb{C}$$. A paraitre aux Annales de l’institut Fourier [2] Drezet, J.-M.: Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $$\mathbb{P}$$2($$\mathbb{C}$$). Z. Angew. Math. Mech.380, 14–58 (1987) · Zbl 0613.14013 [3] Drezet, J.-M.: Groupe de Picard des variétés de modules de faisceaux semi-stables sur $$\mathbb{P}$$2. Singularities, representation of algebras, and vector bundles. Proc. Lambrecht 1985. (Lect. Notes Math., Vol. 1273). Berlin-Heidelberg-New York: Springer 1987 [4] Fulton, W.: Intersection theory. (Ergebnisse der Matheamtik und ihre Grenzgebiete). Berlin-Heidelberg-New York: Springer 1984 · Zbl 0541.14005 [5] Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math.106, 45–60 (1977) · Zbl 0381.14003 [6] Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. IV Les schémas de Hilbert. Séminaire Bourbaki221, (1960/61) [7] Hartshorne, R.: Algebraic geometry. (Grad. Texts in Math., Vol. 52). Berlin-Heidelberg-New York: Springer 1977 · Zbl 0367.14001 [8] Hirscowitz, A.: Problèmes de Brill-Noether en rang supérieur. Preprint [9] Hirschowitz, A., Narasimhan, M.S.: Fibrés de t’Hooft spéciaux et applications. Enumerative geometry and Classical algebraic geometry. Progr. Math., Boston24, (1982) [10] Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math.13, 115 (1974) · Zbl 0289.14010 [11] Kempf, G.: Hochster-Roberts theorem in invariant theory. Mich. Math. J.26, 19 (1979) · Zbl 0409.13004 [12] Lang, S.: Abelian varieties. New York: Interscience Publ. 1959 · Zbl 0099.16103 [13] Maruyama, M.: Moduli of stable sheaves II. J. Math. Kyoto Univ.18, 557–614 (1978) · Zbl 0395.14006 [14] Matsumura, H.: Commutative algebra. New York: W.A. Benjamin Co. 1970 · Zbl 0211.06501 [15] Mumford, D., Fogarty, J.: Geometric invariant theory. (Ergebnisse der Mathematikund ihre Grenzgebiete). Berlin-Heidelberg-New York: Springer 1984 · Zbl 0504.14008 [16] Murthy, M.P.: A note on factorial rings. Arch. Math.15, 418–420 (1964) · Zbl 0123.03401 [17] Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math.89, 14–51 (1969) · Zbl 0186.54902 [18] Narasimhan, M.S., Ramanan, S.: Vector bundles on curves. (Proc. of Bombay Coll. of Algebraic Geometry, pp. 335–346.) Oxford Univ. Press 1969 · Zbl 0213.23002 [19] Newstead, P.E.: Introduction to moduli problems and orbit spaces. TIFR Lect. Notes51, (1978) · Zbl 0411.14003 [20] Ramanan, S.: The moduli spaces of vector bundles on an algebraic curve. Math. Ann.200, 69–84 (1973) · Zbl 0244.14010 [21] Ramanathan, A.: Stable principal bundles on a compact Riemann surface, construction of moduli space. Ph.D. Thesis. Univ. of Bombay (1976) [22] Reid, M.: Canonical 3-folds. Journées de Géométrie Algébrique d’Angers, edité par A. Beauville (1979) 273–310 [23] Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques. Astérisque96, (1982) [24] Shafarevitch, I.R.: Basic algebraic Geometry. (Grundlehren, Bd. 213). Berlin-Heidelberg-New York: Springer 1974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.