×

A space-time BIE method for 2D wave equation problems with mixed boundary conditions. (English) Zbl 1448.65142

Summary: In this paper we consider the 2D exterior problem for the non homogeneous wave equation, with mixed type boundary conditions and non homogeneous initial conditions, these latter having local supports. First we derive a space-time boundary integral equation formulation to solve the problem. Then we propose a numerical approach for its solution, which couples a Lubich discrete convolution quadrature with a classical collocation method. For the computation of the extra “volume” integrals generated by the initial data, having local supports, we propose a new numerical approach. Finally, we solve some test problems and present some of the numerical results we have obtained.

MSC:

65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65D32 Numerical quadrature and cubature formulas
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L05 Wave equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abreu, A. I.; Carrer, J. A.M.; Mansur, W. J., Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method, Eng. Anal. Boundary Elem., 27, 101-105 (2003) · Zbl 1018.74534
[2] Abreu, A. I.; Mansur, W. J.; Canelas, A., Computation of time and space derivatives in a CQM-based BEM formulation, Eng. Anal. Boundary Elem., 33, 314-321 (2009) · Zbl 1244.74135
[3] Aimi, A.; Diligenti, M.; Guardasoni, C., On the energetic Galerkin BEM applied to interior wave propagation problems, J. Comput. Appl. Math., 235, 7, 1746-1754 (2011) · Zbl 1209.65094
[4] Aliabadi, M. H., Boundary Element Methods in Engineering and Sciences (2011), Imperial College Press: Imperial College Press London · Zbl 1283.65001
[5] Bamberger, A.; Ha, T., Duong. Formulation variationelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide, Math. Method Appl. Sci., 8, 405-435 (1986) · Zbl 0618.35069
[6] Bamberger, A.; Ha, T., Duong. Formulation variationelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608 (1986) · Zbl 0636.65119
[7] Banjai, L.; Schanz, M., Wave propagation problems treated with convolution quadrature and BEM, (Langer, U.; Schanz, M.; Steinbach, O.; etal., Fast Boundary Element Methods in Engineering and Industrial Applications. Fast Boundary Element Methods in Engineering and Industrial Applications, Lecture Notes in Applied and Computational Mechanics, 63 (2012), Springer: Springer Berlin) · Zbl 1248.65103
[8] Chappell, D. J., A convolution quadrature Galerkin boundary method for the exterior Neumann problem of the wave equation, Math. Methods Appl. Sci., 32, 1585-1608 (2009) · Zbl 1170.65078
[9] Falletta, S.; Monegato, G., Exact non reflecting boundary condition for 2D time-dependent wave equation problems, Wave Motion, 51, 1, 168-192 (2014) · Zbl 1524.35358
[10] Falletta, S.; Monegato, G.; Scuderi, L., Space-time boundary integral equation methods for non homogeneous wave equation problems. The Dirichlet case, IMA J. Numer. Anal., 32, 1, 202-226 (2012) · Zbl 1242.65196
[11] Falletta, S.; Monegato, G.; Scuderi, L., A space-time BIE method for wave equation exterior problems. The 2D Neumann case, IMA J. Numer. Anal., 34, 1, 390-434 (2014) · Zbl 1303.65081
[12] Frangi, A.; Novati, G., On the numerical stability of tyme-domain elastodynamic analyses by BEM, Comput. Methods Appl. Mech. Eng., 173, 403-417 (1999) · Zbl 0933.74070
[13] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Academic Press: Academic Press New York · Zbl 1208.65001
[14] Laliena, A. R.; Sayas, F.-J., Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112, 637-678 (2009) · Zbl 1178.65117
[15] Lubich, Ch., Convolution quadrature and discretized operational calculus I., Numer. Math., 52, 129-145 (1988) · Zbl 0637.65016
[16] Lubich, Ch., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67, 3, 365-389 (1994) · Zbl 0795.65063
[17] Martin, P. A.; Rizzo, F. J., On the boundary integral equations for crack problems, Proc. R. Soc. Lond. A, 421, 341-355 (1989) · Zbl 0674.73071
[18] Monegato, G., Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math., 50, 9-31 (1994) · Zbl 0818.65016
[19] Monegato, G., Definitions, properties and applications of finite part integrals, J. Comput. Appl. Math., 229, 2, 425-439 (2009) · Zbl 1166.65061
[20] Monegato, G.; Scuderi, L., Potential evaluation in space-time BIE formulations of 2D wave equation problems, J. Comput. Appl. Math., 243, 1, 60-79 (2013) · Zbl 1416.65318
[21] Monegato, G.; Scuderi, L.; Stanić, M. P., Lubich convolution quadratures and their application to space-time BIEs, Numer. Algorithms, 56, 3, 405-436 (2011) · Zbl 1209.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.