zbMATH — the first resource for mathematics

An existence theorem for inclusions of the type \(\Psi\) (u)(t)\(\in F(t,\Phi (u)(t))\) and an application to a multi-valued boundary value problem. (English) Zbl 0687.47044
This paper contains a general existence result on inclusions of the type \(\Psi (u)(t)\in F(t,\Phi (u)(t)),\) where each of \(\Psi\) and \(\Phi\) is an operator from a set V into an \(L^ p\) space of vector-valued functions. An application of such result yields the following
Theorem. Let \(F: [a,b]\times {\mathbb{R}}^ n\times {\mathbb{R}}^ n\to 2^{{\mathbb{R}}^ n}\) be a multifunction, with non-empty closed convex values, satisfying the following conditions:
(1) for almost every \(t\in [a,b]\), the multifunction \((x,y)\to F(t,x,y)\) has closed graph;
(2) the set \(\{(x,y)\in {\mathbb{R}}^ n\times {\mathbb{R}}^ n:\) the multifunction \(t\to F(t,x,y)\) is measurable} is dense in \({\mathbb{R}}^ n\times {\mathbb{R}}^ n;\)
(3) there exists \(p\in [1,+\infty[\) and \(r\in]0,+\infty[\) such that \[ (\int^{b}_{a}(\sup_{\| x\|,\| y\| \leq cr}dist(0,F(t,x,y)))^ p dt)^{1\quad /p}\leq r, \]
where \(c=\max \{(b-a)^{1-1/p},(b-a)^{2-1/p}\}.\)
Under such hypotheses, there exists \(u\in W^{2,p}([a,b],{\mathbb{R}}^ n)\) such that \[ u''(t)\in F(t,u(t),u'(t))\quad a.e.\quad in\quad [a,b],\quad u(a)=u(b)=0. \]
Reviewer: B.Ricceri

47J05 Equations involving nonlinear operators (general)
Full Text: DOI
[1] Aubin J., Applied nonlinear analysis (1984) · Zbl 0641.47066
[2] DOI: 10.1016/0362-546X(87)90092-7 · Zbl 0638.49004 · doi:10.1016/0362-546X(87)90092-7
[3] DOI: 10.1007/BF01305758 · Zbl 0529.54013 · doi:10.1007/BF01305758
[4] Diestel J., Math. Survey 15 (1977)
[5] Erbe L.H., Nonlinear boundary value problems for differential inclusions y”F(t,y,y’) · Zbl 0714.34040
[6] DOI: 10.1073/pnas.38.2.121 · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[7] Granas A., C.R. Acad. Sci 307 pp 391– (1988)
[8] Himmelberg C.J., Fund. Math 87 pp 53– (1975)
[9] DOI: 10.1016/0022-0396(86)90109-9 · Zbl 0582.34002 · doi:10.1016/0022-0396(86)90109-9
[10] Kothe G., Topological vector spaces-I (1969)
[11] Kuratowski K., Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys 13 pp 397– (1965)
[12] Pruszko T., Dissertationes Math 229 pp 1– (1984)
[13] Ricceri B., C. R. Acad. Sci 295 pp 527– (1982)
[14] Tsalyuk V.Z., Math. Notes 43 pp 58– (1988) · Zbl 0655.28004 · doi:10.1007/BF01139570
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.