zbMATH — the first resource for mathematics

An LP-based approach to cutting stock problems with multiple objectives. (English) Zbl 0684.90081
Summary: In many real world cutting stock problems one has to deal with several objectives simultaneously. It is shown how these problems can be formulated and solved by applying interactive techniques known from multiple criteria decision making. Special attention is paid to questions of implementing such methods.

90C27 Combinatorial optimization
90C31 Sensitivity, stability, parametric optimization
90B30 Production models
90C05 Linear programming
90C90 Applications of mathematical programming
Full Text: DOI
[1] Benayoun, B.; de Montgolfier, J.; Tergny, J.; Laritchev, O., Linear programming with multiple objective functions: step method (STEM), Mathematical programming, 1, 366-375, (1971) · Zbl 0242.90026
[2] Dinkelbach, W., Entscheidungsmodelle, (1982), De Gruyter Berlin, New York
[3] Dyckhoff, H., Production theoretic foundation of cutting and related processes, (), 151-180
[4] Dyckhoff, H.; Kruse, H.-J.; Abel, D.; Gal, T., Trim loss and related problems, Omega, 13, 59-72, (1985)
[5] Dyckhoff, H.; Kruse, H.-J.; Abel, D.; Gal, T., Classification of real world trim loss problems, (), 191-208
[6] Eilon, S., Optimizing the shearing of steel bars, Journal of mechanical engineering science, 2, 129-142, (1960)
[7] Eisemann, K., The trim problem, Management science, 3, 279-284, (1957) · Zbl 0995.92500
[8] Farley, A.A.; Richardson, K.V., Fixed charge problems with identical fixed charges, European journal of operational research, 18, 245-249, (1984) · Zbl 0544.90078
[9] Gilmore, P.C.; Gomory, R.E., A linear programming approach to the cutting-stock problem, Operations research, 9, 849-859, (1961) · Zbl 0096.35501
[10] Goulimis, C., Optimal solutions for the cutting stock problem, European journal of operational research, (1990), this issue · Zbl 0684.90082
[11] Harrison, P., A multi-objective decision problem: the furniture Manufacturer’s 2-dimensional cutting or trim problem, (), 231-236, London
[12] Harrison, P., The two-dimensional cutting problem of the furniture manufacturer, (), 625-640
[13] Haessler, R.W., Controlling cutting pattern changes in one-dimensional trim problems, Operations research, 23, 483-493, (1975) · Zbl 0301.90030
[14] Hwang, C.-L.; Masud, A.S.M., Multiple objective decision making—methods and applications. A state-of-the-art-survey, (1979), Springer Berlin
[15] Isermann, H., Strukturierung von entscheidungsprozessen bei mehrfacher zielsetzung, OR spektrum, 1, 3-26, (1979) · Zbl 0443.90096
[16] Isermann, H.; Steuer, R.E., Computational experience concerning payoff tables and minimum criterion values over the efficient set, European journal of operational research, 33, 91-97, (1988) · Zbl 0632.90074
[17] Johnston, R.E., Rounding algorithms for cutting stock problems, Journal of the Asian-Pacific operations research societies, 3, 166-171, (1986) · Zbl 0616.90044
[18] Köhler, H., Das überlängenproblem bei optimalen zuschneideprogrammen einer papierfabrik, Wist, 7, 340-342, (1978)
[19] Smithin, T.; Harrison, P., The third dimension of two-dimensional cutting, Omega, 10, 81-87, (1982)
[20] Steuer, R.E., Multiple criteria optimization: theory, computation, and application, (1986), New York · Zbl 0663.90085
[21] Vajda, S., Readings in linear programming, (1958), New York · Zbl 0082.35503
[22] Wäscher, G.; Carow, P.; Müller, H., Entwicklung eines flexiblen verfahrens für zuschneideprobleme in einem kaltwalzwerk, Zeitschrift für operations research, 29, B209-B230, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.