×

zbMATH — the first resource for mathematics

The universal von Staudt theorems. (English) Zbl 0683.10013
Author’s abstract: “We prove general forms of von Staudt’s theorems on the Bernoulli numbers. As a consequence we are able to deduce strong versions of a number of congruences involving various generalizations of the Bernoulli numbers. For example we obtain an improved form of a congruence due to Hurwitz involving the Laurent series coefficients of the Weierstrass elliptic function associated with a square lattice.”
Reviewer: L.Skula

MSC:
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11A07 Congruences; primitive roots; residue systems
33E05 Elliptic functions and integrals
PDF BibTeX Cite
Full Text: DOI
References:
[1] J. F. Adams, On the groups \?(\?). II, Topology 3 (1965), 137 – 171. · Zbl 0137.16801
[2] Andrew Baker, Combinatorial and arithmetic identities based on formal group laws, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 17 – 34.
[3] L. Carlitz, The coefficients of the reciprocal of a series, Duke Math. J. 8 (1941), 689 – 700. · Zbl 0063.00705
[4] L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math. 75 (1953), 163 – 172. · Zbl 0050.03902
[5] L. Carlitz, A note on the Staudt-Clausen theorem, Amer. Math. Monthly 64 (1957), 19 – 21. · Zbl 0077.05104
[6] L. Carlitz, Classroom Notes: A Property of the Bernoulli Numbers, Amer. Math. Monthly 66 (1959), no. 8, 714 – 715.
[7] T. Clausen, Theorem, Astronomische Nachrichten 17 (1840), 351-352.
[8] Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. · Zbl 0283.05001
[9] I. Dibag, An analogue of the von Staudt-Clausen theorem, J. Algebra 87 (1984), no. 2, 332 – 341. · Zbl 0536.10012
[10] G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungsberichte Berliner Akademie der Wissenschaften, 1910, pp. 809-847. · Zbl 1264.11013
[11] C. W. Haigh, Newton ’s identities, generalised cycle-indices, universal Bernoulli numbers and truncated Schur-functions, J. Math. Chem. (submitted).
[12] A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann. 51 (1899), 196-226. · JFM 29.0385.02
[13] Nicholas M. Katz, The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers, Math. Ann. 216 (1975), 1 – 4. · Zbl 0303.10028
[14] Haynes Miller, Universal Bernoulli numbers and the \?\textonesuperior -transfer, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 437 – 449.
[15] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008
[16] N. Nielsen, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923. · JFM 49.0099.03
[17] Nigel Ray, Extensions of umbral calculus: penumbral coalgebras and generalised Bernoulli numbers, Adv. in Math. 61 (1986), no. 1, 49 – 100. · Zbl 0631.05002
[18] -, Symbolic calculus: a 19th century approach to \( MU\) and \( BP\), Homotopy Theory , Proceedings of the Durham Symposium, 1985, London Math. Soc. Lecture Note Ser. No. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 195-238.
[19] -, Stirling and Bernoulli numbers for complex oriented homology theories, Proc. Internat. Conf. Algebraic Topology, 1986, Arcata , Lecture Notes in Math. vol. 1370, Springer-Verlag, Berlin and New York, 1989, pp. 362-363.
[20] Chip Snyder, A concept of Bernoulli numbers in algebraic function fields, J. Reine Angew. Math. 307/308 (1979), 295 – 308. · Zbl 0398.12006
[21] K. G. C. von Staudt, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend, J. Reine Angew. Math. 21 (1840), 373-374. · ERAM 021.0672cj
[22] -, De numeris Bernoullianis, Erlangen, 1845.
[23] -, De numeris Bernoullianis, commentatio altera, Erlangen, 1845.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.