×

zbMATH — the first resource for mathematics

Bad reduction of genus \(2\) curves with CM Jacobian varieties. Numerical examples. (English) Zbl 06810459
Summary: We show that a genus \(2\) curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a known case of the Colmez conjecture, due to Colmez and Obus, that is valid when the CM field is an abelian extension of the rationals. It links the height and the logarithmic derivatives of an \(L\)-function. The second formula involves a decomposition of the height into local terms based on a hyperelliptic model. We use the reduction theory of genus \(2\) curves as developed by Igusa, Liu, Saito, and Ueno to relate the contribution at the finite places with the stable bad reduction of the curve. The subconvexity bounds by Michel and Venkatesh together with an equidistribution result of Zhang are used to bound the infinite places.

MSC:
14K22 Complex multiplication and abelian varieties
11G18 Arithmetic aspects of modular and Shimura varieties
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11G50 Heights
14H40 Jacobians, Prym varieties
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Autissier, P., Hauteur de Faltings et hauteur de Néron-Tate du diviseur thêta, Compos. Math., 142, 1451-1458, (2006) · Zbl 1110.14022
[2] Badzyan, A. I., The Euler-Kronecker constant, Mat. Zametki, 87, 35-47, (2010) · Zbl 1209.11098
[3] Birkenhake, C. and Lange, H., Complex abelian varieties, (Springer, Berlin, 2004). doi:10.1007/978-3-662-06307-1 · Zbl 1056.14063
[4] Bombieri, E. and Gubler, W., Heights in Diophantine geometry, (Cambridge University Press, Cambridge, 2006). · Zbl 1115.11034
[5] Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, (Springer, Berlin, 1990). doi:10.1007/978-3-642-51438-8
[6] Bost, J.-B., Mestre, J.-F. and Moret-Bailly, L., Sur le calcul explicite des ‘classes de Chern’ des surfaces arithmétiques de genre 2, Astérisque183 (1990), 69-105; Séminaire sur les pinceaux de courbes elliptiques (Paris, 1988).
[7] Clozel, L. and Ullmo, E., Équidistribution de mesures algébriques, Compos. Math.141 (2005), 1255-1309. doi:10.1112/S0010437X0500148X · Zbl 1077.22014
[8] Cohen, P. B., Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties, Duke Math. J., 129, 87-127, (2005) · Zbl 1155.11326
[9] Cohen, H., Number theory volume II: analytic and modern tools, (2007), Springer: Springer, New York · Zbl 1119.11002
[10] Colmez, P., Périodes des variétés abéliennes à multiplication complexe, Ann. of Math. (2), 138, 625-683, (1993) · Zbl 0826.14028
[11] Colmez, P., Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe, Compos. Math., 111, 359-368, (1998) · Zbl 0918.11025
[12] Deligne, P. and Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math.36 (1969), 75-109. doi:10.1007/BF02684599 · Zbl 0181.48803
[13] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73, 349-366, (1983) · Zbl 0588.14026
[14] Fontaine, J.-M., Il n’y a pas de variété abélienne sur ℤ, Invent. Math., 81, 515-538, (1985) · Zbl 0612.14043
[15] Goren, E. Z., On certain reduction problems concerning abelian surfaces, Manuscripta Math., 94, 33-43, (1997) · Zbl 0924.14023
[16] Goren, E. Z. and Lauter, K. E., Evil primes and superspecial moduli, Int. Math. Res. Not. IMRN2006 (2006), Art. ID 53864. · Zbl 1124.14042
[17] Goren, E. Z. and Lauter, K. E., Class invariants for quartic CM fields, Ann. Inst. Fourier (Grenoble)57 (2007), 457-480. doi:10.5802/aif.2264 · Zbl 1172.11018
[18] Griffiths, P. and Harris, J., Principles of algebraic geometry (Wiley-Interscience, New York, 1978). · Zbl 0408.14001
[19] Habegger, P., Singular moduli that are algebraic units, Algebra Number Theory, 9, 1515-1524, (2015) · Zbl 1334.11046
[20] Ibukiyama, T., Katsura, T. and Oort, F., Supersingular curves of genus two and class numbers, Compos. Math.57 (1986), 127-152. · Zbl 0589.14028
[21] Igusa, J., Arithmetic variety of moduli for genus two, Ann. of Math. (2), 72, 612-649, (1960) · Zbl 0122.39002
[22] Iwaniec, H., Duke, W. and Friedlander, J. B., The subconvexity problem for Artin L-functions, Invent. Math.149 (2002), 489-577. doi:10.1007/s002220200223 · Zbl 1056.11072
[23] Iwaniec, H. and Kowalski, E., Analytic number theory, (American Mathematical Society, Providence, RI, 2004). doi:10.1090/coll/053 · Zbl 1059.11001
[24] De Jong, J. and Noot, R., Jacobians with complex multiplication, in Arithmetic algebraic geometry (Texel, 1989), (Birkhäuser, Boston, MA, 1991), 177-192. doi:10.1007/978-1-4612-0457-2_8 · Zbl 0732.14014
[25] Klingen, H., Introductory lectures on Siegel modular forms, (1990), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0693.10023
[26] Liu, Q., Courbes stables de genre 2 et leur schéma de modules, Math. Ann., 295, 201-222, (1993) · Zbl 0819.14010
[27] Liu, Q., Conducteur et discriminant minimal de courbes de genre 2, Compos. Math., 94, 51-79, (1994) · Zbl 0837.14023
[28] Liu, Q., Algebraic geometry and arithmetic curves, (Oxford University Press, Oxford, 2002); translated from the French by Reinie Erné, Oxford Science Publications. · Zbl 0996.14005
[29] Lockhart, P., On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc., 342, 729-752, (1994) · Zbl 0815.11031
[30] Michel, P. and Venkatesh, A., The subconvexity problem for GL_2, Publ. Math. Inst. Hautes Études Sci.111 (2010), 171-271. doi:10.1007/s10240-010-0025-8 · Zbl 1376.11040
[31] Moret-Bailly, L., Problèmes de Skolem sur les champs algébriques, Compos. Math., 125, 1-30, (2001) · Zbl 1106.11022
[32] Mumford, D., Tata lectures on theta. II, (1984), Birkhäuser: Birkhäuser, Boston, MA
[33] Nakkajima, Y. and Taguchi, Y., A generalization of the Chowla-Selberg formula, J. Reine Angew. Math.419 (1991), 119-124. · Zbl 0721.11045
[34] Namikawa, Y. and Ueno, K., The complete classification of fibres in pencils of curves of genus two, Manuscripta Math.9 (1973), 143-186. doi:10.1007/BF01297652 · Zbl 0263.14007
[35] Neukirch, J., Algebraic number theory, (1999), Springer: Springer, Berlin · Zbl 0956.11021
[36] Obus, A., On Colmez’s product formula for periods of CM-abelian varieties, Math. Ann., 356, 401-418, (2013) · Zbl 1357.11059
[37] Pazuki, F., Theta height and Faltings height, Bull. Soc. Math. France, 140, 19-49, (2012) · Zbl 1245.14029
[38] Pazuki, F., Décompositions en hauteurs locales, Preprint, 2012, arXiv:1205.4525.
[39] Pazuki, F., Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes, Manuscripta Math., 142, 61-99, (2013) · Zbl 1304.11058
[40] Pila, J. and Tsimerman, J., The André-Oort conjecture for the moduli space of abelian surfaces, Compos. Math.149 (2013), 204-216. doi:10.1112/S0010437X12000589 · Zbl 1304.11055
[41] Pila, J. and Tsimerman, J., Ax-Lindemann for A_g, Ann. of Math. (2)179 (2014), 659-681. doi:10.4007/annals.2014.179.2.5 · Zbl 1305.14020
[42] Saito, T., Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J., 57, 151-173, (1988) · Zbl 0657.14017
[43] Saito, T., The discriminants of curves of genus 2, Compos. Math., 69, 229-240, (1989) · Zbl 0703.14021
[44] Schoof, R., Abelian varieties over cyclotomic fields with good reduction everywhere, Math. Ann., 325, 413-448, (2003) · Zbl 1058.11038
[45] Serre, J.-P. and Tate, J. T., Good reduction of abelian varieties, Ann. of Math. (2)88 (1968), 492-517. doi:10.2307/1970722 · Zbl 0172.46101
[46] Shimura, G., Abelian varieties with complex multiplication and modular functions, (1997), Princeton University Press: Princeton University Press, Princeton, NJ
[47] Szpiro, L. (ed.), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, (Société Mathématique de France, Paris, 1985).
[48] Ueno, K., Discriminants of curves of genus 2 and arithmetic surfaces, in Algebraic geometry and commutative algebra, Vol. II (Kinokuniya, Tokyo, 1988), 749-770. doi:10.1016/B978-0-12-348032-3.50014-1
[49] Van Der Geer, G., Hilbert modular surfaces, (1988), Springer: Springer, Berlin · Zbl 0634.14022
[50] Van Wamelen, P., Examples of genus two CM curves defined over the rationals, Math. Comp., 68, 307-320, (1999) · Zbl 0906.14025
[51] Van Wamelen, P., Proving that a genus 2 curve has complex multiplication, Math. Comp., 68, 1663-1677, (1999) · Zbl 0936.14033
[52] Vojta, P., Integral points on subvarieties of semiabelian varieties. II, Amer. J. Math., 121, 283-313, (1999) · Zbl 1018.11027
[53] Washington, L. C., Introduction to cyclotomic fields, (1982), Springer: Springer, New York · Zbl 0484.12001
[54] Yang, T., The Chowla-Selberg formula and the Colmez conjecture, Canad. J. Math., 62, 456-472, (2010) · Zbl 1205.11068
[55] Zhang, S., Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. IMRN, 2005, 3657-3689, (2005) · Zbl 1096.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.