×

zbMATH — the first resource for mathematics

Wave-vortex dynamics in rotating shallow water. (English) Zbl 0678.76011
Summary: We investigate how two-dimensional turbulence is modified when the incompressibility constraint is removed, by numerically integrating the full Saint-Venant (shallow-water) equations. In the case of small geopotential fluctuations considered here, we find no energy exchange between the inertio-gravitational and the potentio-vortical components of the flow. At small scales, the potentio-vortical component behaves as if the flow were incompressible, while we observe an intense direct energy cascade within the inertio-gravitational component. At large scales the reverse potentio-vortical energy cascade is reduced when the level of inertio-gravitational energy is high. Looking at the effect of rotation, we find that a fast rotation rate tends to inhibit all three cascades. In particular, the inhibition of the inertio-gravitational energy cascade towards small scales implies that the geostrophic adjustment process is hindered by an increase of rotation. Concerning the structure of the coherent vortices emerging out of these decaying turbulent flows, we observe that the smallest scales are concentrated inside the vortex cores and not on their periphery.

MSC:
76B47 Vortex flows for incompressible inviscid fluids
76U05 General theory of rotating fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Moyal, Proc. Camb. Phil. Soc. 48 pp 329– (1952)
[2] Cahn, J. Met. 2 pp 113– (1945) · doi:10.1175/1520-0469(1945)002<0113:AIOTFO>2.0.CO;2
[3] DOI: 10.1175/1520-0469(1974)031 2.0.CO;2 · doi:10.1175/1520-0469(1974)031 · doi:2.0.CO;2
[4] Métais, J. Fluid Mech. 202 pp 97– (1989)
[5] DOI: 10.1175/1520-0469(1983)040 2.0.CO;2 · doi:10.1175/1520-0469(1983)040 · doi:2.0.CO;2
[6] DOI: 10.1175/1520-0469(1983)040 2.0.CO;2 · doi:10.1175/1520-0469(1983)040 · doi:2.0.CO;2
[7] DOI: 10.1063/1.1692443 · Zbl 0217.25801 · doi:10.1063/1.1692443
[8] DOI: 10.1017/S0022112084001750 · Zbl 0561.76059 · doi:10.1017/S0022112084001750
[9] DOI: 10.1017/S0022112075001620 · Zbl 0309.76045 · doi:10.1017/S0022112075001620
[10] DOI: 10.1175/1520-0469(1986)043 2.0.CO;2 · doi:10.1175/1520-0469(1986)043 · doi:2.0.CO;2
[11] DOI: 10.1175/1520-0469(1981)038 2.0.CO;2 · doi:10.1175/1520-0469(1981)038 · doi:2.0.CO;2
[12] DOI: 10.1175/1520-0469(1980)037 2.0.CO;2 · doi:10.1175/1520-0469(1980)037 · doi:2.0.CO;2
[13] DOI: 10.1017/S0022112085001550 · doi:10.1017/S0022112085001550
[14] DOI: 10.1175/1520-0469(1983)040 2.0.CO;2 · doi:10.1175/1520-0469(1983)040 · doi:2.0.CO;2
[15] DOI: 10.1017/S0022112087002684 · doi:10.1017/S0022112087002684
[16] DOI: 10.1175/1520-0469(1980)037 2.0.CO;2 · doi:10.1175/1520-0469(1980)037 · doi:2.0.CO;2
[17] Babiano, C.R. Acad. Sci. Paris 299 pp 601– (1984)
[18] Leith, Phys. Fluids 11 pp 617– (1968)
[19] Asselin, Mon. Weather Rev. 100 pp 487– (1972)
[20] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[21] DOI: 10.1175/1520-0469(1982)039 2.0.CO;2 · doi:10.1175/1520-0469(1982)039 · doi:2.0.CO;2
[22] Hopfinger, J. Méc. Special Issue on Two-Dimensional Turbulence 40 pp 21– (1983)
[23] DOI: 10.1175/1520-0469(1983)040 2.0.CO;2 · doi:10.1175/1520-0469(1983)040 · doi:2.0.CO;2
[24] Zakharov, Sov. Phys. Dokl. 15 pp 439– (1970)
[25] DOI: 10.1017/S0022112085001239 · Zbl 0585.76069 · doi:10.1017/S0022112085001239
[26] DOI: 10.1063/1.1694822 · Zbl 0366.76045 · doi:10.1063/1.1694822
[27] Fox, Phys. Fluids 16 pp 167– (1973)
[28] Warn, Tellus 38A pp 1– (1986)
[29] DOI: 10.1016/0021-9991(77)90023-7 · Zbl 0461.76040 · doi:10.1016/0021-9991(77)90023-7
[30] DOI: 10.1017/S0022112086000836 · doi:10.1017/S0022112086000836
[31] Farge, C.R. Acad. Sci. Paris 303II pp 881– (1986)
[32] Salmon, Geophys. Astrophys. Fluid Dyn. 10 pp 25– (1978)
[33] Farge, C.R. Acad. Sci. Paris 302II pp 847– (1986)
[34] Saffman, Stud. Appl. Maths 50 pp 377– (1971) · Zbl 0237.76029 · doi:10.1002/sapm1971504377
[35] Farge, C. R. Acad. Sci. Paris 307II pp 1479– (1988)
[36] DOI: 10.1175/1520-0469(1985)042 2.0.CO;2 · doi:10.1175/1520-0469(1985)042 · doi:2.0.CO;2
[37] Farge, J. Méc. Théor. Appl., Special Issue, Suppl. 2 to 7 pp 63– (1988)
[38] DOI: 10.1175/1520-0469(1975)032 2.0.CO;2 · doi:10.1175/1520-0469(1975)032 · doi:2.0.CO;2
[39] Errico, Tellus 36A pp 42– (1984)
[40] DOI: 10.1175/1520-0469(1981)038 2.0.CO;2 · doi:10.1175/1520-0469(1981)038 · doi:2.0.CO;2
[41] DOI: 10.1146/annurev.fl.11.010179.002153 · doi:10.1146/annurev.fl.11.010179.002153
[42] DOI: 10.1017/S0022112086001696 · Zbl 0616.76069 · doi:10.1017/S0022112086001696
[43] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[44] DOI: 10.1175/1520-0469(1975)032 2.0.CO;2 · doi:10.1175/1520-0469(1975)032 · doi:2.0.CO;2
[45] Riabouchinsky, C.R. Acad. Sci. Paris 195 pp 998– (1932)
[46] Craya, P.S.T. Ministère de l’Air 45 pp 345– (1958)
[47] Obukhov, Izv. Akad. Nauk. SSSR, Geogra. Geofiz. 13 pp 281– (1949)
[48] Couder, J. Phys. Lett. 45 pp 353– (1984)
[49] DOI: 10.1175/1520-0485(1988)018 2.0.CO;2 · doi:10.1175/1520-0485(1988)018 · doi:2.0.CO;2
[50] DOI: 10.1175/1520-0469(1971)028 2.0.CO;2 · doi:10.1175/1520-0469(1971)028 · doi:2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.