×

zbMATH — the first resource for mathematics

Classical relativistic spinning particles. (English) Zbl 0678.70021
Summary: An elementary particle is defined as a mechanical system whose kinematical space is a homogeneous space of the Poincaré group. Lagrangians for describing these systems depend on higher-order derivatives and some of them are analyzed. For bradyons the Lagrangian depends on the acceleration and angular velocity of the particle and is characterized by two parameters m and s, the rest mass and absolute value of spin, respectively. In general the spin is of kinematical nature, related to the rotation and internal orbital motion of the system. Two different kinds of bradyons appear according to the spin structure. One has a spin related to the generalized angular velocity while the other is a function of the generalized acceleration. Photons are massless particles with spin lying along the direction of motion and energy hv, where v is the frequency of its rotational motion. Particles moving in circles with velocity c in their center of mass frame are also predicted, showing a Dirac-type Hamiltonian. There also appear particles with tachyonic orbital motion whose center of mass has bradyonic motion. Transformation properties under space and time reversal are also analyzed.

MSC:
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.527621 · doi:10.1063/1.527621
[2] DOI: 10.1063/1.527621 · doi:10.1063/1.527621
[3] Ostrogradsky M., Mem. Acad. St. Petersburg 6 (4) pp 385– (1850)
[4] DOI: 10.1002/andp.19404300504 · Zbl 0024.14302 · doi:10.1002/andp.19404300504
[5] DOI: 10.1002/andp.19404300504 · Zbl 0024.14302 · doi:10.1002/andp.19404300504
[6] DOI: 10.1002/andp.19404300504 · Zbl 0024.14302 · doi:10.1002/andp.19404300504
[7] DOI: 10.1002/andp.19404300504 · Zbl 0024.14302 · doi:10.1002/andp.19404300504
[8] DOI: 10.1007/BF02785231 · doi:10.1007/BF02785231
[9] DOI: 10.1063/1.1664490 · Zbl 0162.58606 · doi:10.1063/1.1664490
[10] DOI: 10.1007/BF01646436 · Zbl 0175.21201 · doi:10.1007/BF01646436
[11] DOI: 10.2307/1969831 · Zbl 0055.10304 · doi:10.2307/1969831
[12] DOI: 10.1016/0003-4916(74)90046-3 · doi:10.1016/0003-4916(74)90046-3
[13] DOI: 10.1088/0143-0807/7/1/001 · doi:10.1088/0143-0807/7/1/001
[14] DOI: 10.1063/1.522991 · Zbl 0347.20029 · doi:10.1063/1.522991
[15] DOI: 10.1007/BF02737484 · doi:10.1007/BF02737484
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.