×

Convergence of relaxed parallel multisplitting methods. (English) Zbl 0676.65022

D. P. O’Leary and R. E. White [SIAM J. Algebraic Discrete Methods 6, 630-640 (1985; Zbl 0582.65018)] introduced, for large sparse systems \(Ax=b\), parallel iterative methods based on several splittings of A. They also introduce a positive relaxation parameter \(\omega\) in the same way as in the relaxed Jacobi method; it may also be introduced as in the Gauss-Seidel method. In the present paper it is proved that, if A is an H-matrix, these methods converge if \(\omega \in (0,\omega_ 0)\) with \(\omega_ 0>1\).
Reviewer: A.de Castro

MSC:

65F10 Iterative numerical methods for linear systems

Citations:

Zbl 0582.65018
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alefeld, G.; Varga, R. S., Zur Konvergenz des symmetrischen Relaxationsverfahrens, Numer. Math., 25, 291-295 (1976) · Zbl 0319.65030
[2] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1979), Academic: Academic New York · Zbl 0484.15016
[3] Fan, Ky, Topological proofs for certain theorems on matrices with non-negative elements, Monatsh. Math., 62, 219-237 (1958) · Zbl 0081.25104
[4] A. Frommer, Parallel nonlinear multisplitting methods, to appear in Numer. Math.; A. Frommer, Parallel nonlinear multisplitting methods, to appear in Numer. Math. · Zbl 0662.65042
[5] A. Frommer and G. Mayer, Parallel interval multisplittings, submitted for publication.; A. Frommer and G. Mayer, Parallel interval multisplittings, submitted for publication. · Zbl 0682.65016
[6] Neumaier, A., New techniques for the analysis of linear interval equations, Linear Algebra Appl., 58, 273-325 (1984) · Zbl 0558.65019
[7] Neumann, M.; Plemmons, R. J., Convergence of parallel multisplitting iterative methods for \(M\)-matrices, Linear Algebra Appl., 88/89, 559-573 (1987) · Zbl 0626.65025
[8] Niethammer, W., Relaxation bei komplexen Matrizen, Math. Z., 86, 34-40 (1964) · Zbl 0242.65036
[9] O’Leary, D. P.; White, R. E., Multi-splittings of matrices and parallel solution of linear systems, SIAM J. Algebraic Discrete Methods, 6, 630-640 (1985) · Zbl 0582.65018
[10] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic: Academic New York · Zbl 0241.65046
[11] White, R. E., A nonlinear parallel algorithm with applications to the Stefan problem, SIAM J. Numer. Anal., 23, 639-652 (1986) · Zbl 0604.65033
[12] White, R. E., Parallel algorithms for nonlinear problems, SIAM J. Algebraic Discrete Methods, 7, 137-149 (1986) · Zbl 0604.65032
[13] Varga, R. S., Matrix Iterative Analysis (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0133.08602
[14] Varga, R. S., On recurring theorems on diagonal dominance, Linear Algebra Appl., 13, 1-9 (1976) · Zbl 0336.15007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.