zbMATH — the first resource for mathematics

Stationary instability of the convective flow between differentially heated vertical planes. (English) Zbl 0673.76045
Summary: An asymptotic theory describes the stationary instability of convective flow between differentially heated vertical planes at large Prandtl numbers. The theory is concerned with the structure for \(A\gg 1\), where A is a Rayleigh number based on the horizontal temperature difference and the distance between the planes. As such it is relevant to the instability of flow in a vertical slot of aspect ratio \(h\gg 1\) where the convective regime corresponds to order-one values of a non-dimensional parameter \(\gamma\) which partly depends on the vertical temperature gradient generated in the slot and can be approximated by \(\gamma^ 4=A/8h\). Instability is shown to set in at a critical value of \(\gamma\) that compares well with experimental observation. The lower branch of the neutral curve conforms to a boundary-layer type approximation while the upper branch has a critical-layer structure midway between the planes which becomes fully developed as the first reversal of the vertical velocity of the base flow is encountered near the centreline.

76E15 Absolute and convective instability and stability in hydrodynamic stability
80A20 Heat and mass transfer, heat flow (MSC2010)
76M99 Basic methods in fluid mechanics
Full Text: DOI
[1] Daniels, Proc. R. Soc. Lond. A401 pp 145– (1985) · Zbl 0575.76084 · doi:10.1098/rspa.1985.0092
[2] DOI: 10.1016/0017-9310(85)90100-0 · doi:10.1016/0017-9310(85)90100-0
[3] DOI: 10.1017/S0022112078000452 · doi:10.1017/S0022112078000452
[4] Batchelor, Q. Appl. Maths 12 pp 209– (1954)
[5] DOI: 10.1063/1.1694263 · Zbl 0307.76023 · doi:10.1063/1.1694263
[6] DOI: 10.1017/S0022112069001467 · Zbl 0167.25704 · doi:10.1017/S0022112069001467
[7] DOI: 10.1017/S0022112081000827 · doi:10.1017/S0022112081000827
[8] DOI: 10.1175/1520-0469(1966)023 2.0.CO;2 · doi:10.1175/1520-0469(1966)023 · doi:2.0.CO;2
[9] DOI: 10.1017/S0022112078000427 · doi:10.1017/S0022112078000427
[10] DOI: 10.1016/0017-9310(73)90161-0 · doi:10.1016/0017-9310(73)90161-0
[11] DOI: 10.1017/S0022112069001431 · Zbl 0165.57901 · doi:10.1017/S0022112069001431
[12] DOI: 10.1017/S0022112065001246 · doi:10.1017/S0022112065001246
[13] DOI: 10.1017/S0022112087000740 · Zbl 0612.76091 · doi:10.1017/S0022112087000740
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.